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Disclaimer:

The material provided in this file is purely for learning and sharing of
knowledge purpose. Authors does not claim to cover all the prescribed
syllabus. For reference and examination purpose the reference books
prescribed in official syllabus of the university will be considered final.
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Although we are used to notion of sets and function from our school time.
We’ll still recall some important definition and properties of sets and
function in this section.

A set is a ”collection”, ”family” or ”class” (of objects, numbers, things,
other sets etc.)
Examples of a set:

A collection of all pens in this room.

A collection of all the chairs in this building

A collection of all the tables and chairs in this building

The class of all natural numbers

Example of a collection which is not a set.

A collection of all the best actors of India
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Some useful notations:

x ∈ A, the element x is in the set A or x belongs to A

If x is not in A, we write x 6∈ A

If every element of a set A also belongs to a set B, we say that A is a
subset of B and write A ⊆ B (or simply A ⊂ B)or B is a superset of
A and write B ⊇ A

A set A is a called a proper subset of a set B if A ⊆ B, but there is at
least one element of B that is not in A. we write A ( B

Two sets A and B are said to be equal if A ⊆ B and B ⊆ A.
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A set can be defined either by listing all its members (e.g. {1, 2, 3},
{2, 4, 4, 7})
or by specifying some unique property that determine the elements of
the set.
e.g. N = {1, 2, 3 . . .} = the set of all natural numbers,
A = {n ∈ N : n2 − 4 = 0}
φ denotes the empty set, the unique set which contains no elements.
Sometimes it is also written {}.
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Some more examples of sets we generally use in mathematics

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}, the set of Integers

Q = {p/q : p ∈ Z, q ∈ N}, the set of all rational numbers

R, the set of real numbers

C, the set of complex numbers

We can write the set of even natural numbers as {n ∈ N : n is even}
or {2n : n ∈ N}
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Set operations

The union of sets A and B is the set
A ∪ B ={x : x ∈ A or x ∈ B}
e.g. A = {1, 3, 5} and B = {1, 2, 4} then A ∪ B = {1, 2, 3, 4, 5}
The intersection of sets A and B is the set
A ∩ B ={x : x ∈ A and x ∈ B}
e.g. A = {1, 3, 5} and B = {1, 2, 4} then A ∩ B = {1}
The complement of B relative to A (or A minus B)is the set
A \ B ={x : x ∈ A and x 6∈ B}
e.g. A = {1, 3, 5} and B = {1, 2, 4} then A \ B = {3, 5}
Two sets A and B are said to be disjoint if they have no elements in
common. (i.e. A ∩ B = φ)
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Theorem 1

If A,B and C are sets, then

(a) A \ (B ∪ C ) = (A \ B) ∩ (A \ C )

(b) A \ (B ∩ C ) = (A \ B) ∪ (A \ C )

Proof
We shall prove part (a). To show that the set on the right hand side of the
equation is same as the set on the left hand side of the equation, we have
to pick an element form LHS and show that the element is in RHS set too.
And vice versa ( i.e. to pick an element form RHS and show that the
element is in LHS set too)
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Let x ∈ A \ (B ∪ C ).
This implies x ∈ A but x 6∈ (B ∪ C ).
Which implies x ∈ A but x is neither in B nor x is in C .
This implies x is in A but not in B and x is in A but not in C
This implies x ∈ (A \ B) and x ∈ (A \ C )
This implies x ∈ (A \ B) ∩ (A \ C )
This means A \ (B ∪ C ) ⊆ (A \ B) ∩ (A \ C ) (i)
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Now we’ll prove the converse.
Let x ∈ (A \ B) ∩ (A \ C ).
This implies x ∈ A but x 6∈ B and x ∈ A but x ∈ C .
This implies x ∈ A but x is neither in B nor in C .
This implies x ∈ A but x 6∈ (B ∪ C )
This implies x ∈ A \ (B ∪ C ).
This shows (A \ B) ∩ (A \ C ) ⊆ A \ (B ∪ C ) (ii)

By (i), (ii) and definition of equality of sets we can say that
A \ (B ∪ C ) = (A \ B) ∩ (A \ C )
Part (b) of the theorem can also be proved by similar technique.
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If {A1,A2,A3, . . . ,An} are sets then their union is denoted by
n⋃

i=1
Ai and

their intersection is denoted by
n⋂

i=1
Ai .

Similarly, for {A1,A2,A3, . . .} are countably many sets then their union

is denoted by
∞⋃
i=1

Ai and their intersection is denoted by
∞⋂
i=1

Ai .
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Definition 1

If A and B are nonempty sets, then the Cartesian product A× B of A and
B is the set of all ordered pairs (a, b) with a ∈ A and b ∈ B. That is,

A× B = {(a, b) : a ∈ A, b ∈ B}

If A = {1, 2, 3} and B = {1, 5}, then

A× B = {(1, 1), (1, 5), (2, 1), (2, 5), (3, 1), (3, 5)}
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Definition 2

Let A and B be sets. Then a function from A to B is a set f of ordered
pairs in A× B such that for each a ∈ A there exists a unique b ∈ B with
(a, b) ∈ f .

The set A of first elements of a function f is called the domain of f and is
often denoted by D(f ). The set of all second elements in f is called the
range of f and is of ten denoted by R(f ) .

Note that, although D(f ) = A, we only have R(f ) ⊆ B.
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Definition 3

Let f : A→ B be a function from A to B
(a) The function f is said to be injective (or to be one-one) if whenever
x1 6= x2, then f (x1) 6= f (x2) . If f is an injective function, we also say that
f is an injection.
(b) The function f is said to be surjective (or to map A onto B ) if
f (A) = B; that is, if the range R(f ) = B. If f is a surjective function, we
also say that f is a surjection.
(c) If f is both injective and surjective, then f is said to be bijective. If f
is bijective, we also say that f is a bijection.
(d) If f : A→ B is a bijection of A onto B, then

g = {(b, a) ∈ B × A : (a, b) ∈ f }

is a function on B into A. This function is called the inverse function of f ,
and is denoted by f −1. The function f −1 is also called the inverse of f
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Definition 4

If f : A→ B and g : B → C , and if R(f ) ⊆ D(g) = B, then the
composite function g ◦ f is the function from A into C defined by

(g ◦ f )(x) = g(f (x)) for all x ∈ A
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Finite and Infinite sets

The empty set φ is said to have 0 elements.

A set S is said to have n elements (n ∈ N) if there exists a
bijection from the set {1, 2, 3, . . . , n} (we call it Nn) onto S .

A set S is said to be finite if it is either empty or it has n
elements for some n ∈ N.

A set S is said to be infinite if it is not finite.
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Theorem 2 (Uniqueness Theorem)

If S is a finite set, then the number of elements in S is a unique number in
N.

Theorem 3

The set N of natural numbers is an infinite set.
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Theorem 4

(a) If A is a set with m elements and B is a set with n elements and if
A ∩ B = φ , then A ∪ B has m + n elements.

(b) If A is a set with m ∈ N elements and C ⊆ A is a set with 1 element,
then A \ C is a set with m − 1 elements.

(c) If C is an infinite set and B is a finite set, then C \B is an infinite set.

Proof:-
We shall prove part (a) of the theorem. Proof of part (b) and (c) are
similar.
Let f be a bijection of Nm onto A, and let g be a bijection of Nn onto B.
Now we define h on Nm+n by h(i) = f (i) for i = 1, . . . ,m and
h(i) = g(i − m) for i = m + 1, . . . ,m + n. We will show that h is a
bijection from Nm+n onto A ∪ B.

Nishant Parmar (GSCCU) Analysis-1 18 / 67



(i) To show h is one-to-one function.
Let i , j ∈ {1, 2, . . . ,m,m + 1, . . . ,m + n} such that i 6= j .
w.l.g. we can also assume i ≤ j .
We have 3 possibilities:
(1) i , j ∈ {1, 2, . . . ,m}
since i , j ∈ {1, 2, . . . ,m} , h(i) = f (i) and h(j) = f (j) also as i 6= j implies
f (i) 6= f (j) (because f is one-to-one). Hence h(i) 6= h(j).
(2) i , j ∈ {m + 1, . . . ,m + n}
proof is similar to (i) and the fact that g is one-to -one
(3) i ∈ {1, 2, . . . ,m} and j ∈ {m + 1, . . . ,m + n}
since i ∈ {1, 2, . . . ,m}, implies h(i) = f (i) ∈ A.
and j ∈ {m + 1, . . . ,m + n}, implies h(j) = g(j) ∈ B.
now, A ∩ B = φ. This implies h(i) 6= h(j).
So in all the three cases i 6= j implies h(i) 6= h(j).
This proves h is one-to-one function.
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Now we’ll show that h is onto.
Let x ∈ A ∪ B. since A ∩ B = φ, x ∈ A or x ∈ B but not in both.
If x ∈ A means ∃i ∈ {1, 2, . . . ,m}, such that f (i) = x (∵ f is onto).
Therefore h(i) = f (i) = x .
If x ∈ B means ∃i ∈ {m+ 1, . . . ,m+ n}, such that g(i) = x (∵ g is onto).
Therefore h(i) = g(i) = x .
This shows that for any x ∈ A ∪ B, ∃i ∈ Nm+n such that h(i) = x .
This proves h is onto.
So, we have shown that there exists a bijection between A ∪ B and Nm+n,
hence A ∪ B has m + n elements. �
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Theorem 5

Suppose that S and T are sets and that T ⊆ S .
(a) If S is a finite set, then T is a finite set.
(b) If T is an infinite set, then S is an infinite set.

Proof. Since (b) is just contrapositive statement of (a). It is enough to
prove statement (a).
(a) If T = φ, we already know that T is a finite set. Thus we may suppose
that T 6= φ. The proof is by induction on the number of elements in S .
If S has 1 element, then the only nonempty subset T of S must coincide
with S , so T is a finite set.
Suppose that every nonempty subset of a set with k elements is finite.
Now let S be a set having k + 1 elements (so there exists a bijection f of
Nk+1 onto S), and let T ⊆ S . If f (k + 1) 6∈ T , we can consider T to be a
subset of S1 := S \ {f (k + 1)}, which has k elements by previous
Theorem. Hence, by the induction hypothesis, T is a finite set.
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On the other hand, if f (k + 1) ∈ T , then T1 := T \ {f (k + 1)} is a subset
of S1. Since S1 has k elements, the induction hypothesis implies that T1 is
a finite set. But this implies that T = T1 ∪ {f (k + 1)} is also a finite set.
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Countable sets

Definition 5

(a) A set S is said to be denumerable (or countably
infinite) if there exists a bijection of N onto S.

(b) A set S is said to be countable if it is either finite or
denumerable.

(c) A set S is said to be uncountable if it is not countable.
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Examples (a) The set E := {2n : n ∈ N} of even natural numbers is
denumerable, since the mapping f ; N→ E defined by f (n) := 2n for
n ∈ N is a bijection of N onto E .
Similarly, the set O := {2n − 1 : n ∈ N} of odd natural numbers is
denumerable.
(b) The set Z of all integers is denumerable.

Z = {0, 1,−1, 2,−2, 3,−3, . . .}.

(c) The union of two disjoint denumerable sets is denumerable.
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Theorem 6

The set N× N is denumerable.

Proof: Recall that N× N = {(m, n) : m, n ∈ N}
We can arrange pairs (m, n) in increasing order of m + n. for same m + n
we put the pair first for which m is lower.

(1, 1), (1, 2), (2, 1), (1, 3), (2, 2), (3, 1), (1, 4), . . .
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Theorem 7 (without proof)

Suppose that S and T are sets and that T ⊆ S .
(a) If S is a countable set, then T is a countable set.
(b) If T is an uncountable set, then S is an uncountable set.

Theorem 8

The following statements are equivalent;
(a) S is a countable set.
(b) There exists a surjection of N onto S .
(c) There exists an injection of S into N.
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Proof

(a)⇒ (b) If S is finite, there exists a bijection h of some set Nn onto S
and we define H on N by

H(k) :=

{
h(k) for k = 1, . . . , n,
h(n) for k > n.

Then H is a surjection of N onto S .
If S is denumerable, there exists a bijection H of N onto S , which is also a
surjection of N onto S .
(b)⇒ (c) If H is a surjection of N onto S , we define H1 ; S → N by letting
H1(s) be the least element in the set H−1(s) := {n ∈ N : H(n) = s}.
To see that H1 is an injection of S into N, note that if s, t ∈ S and
nt := H1(s) = H1(t) , then s = H(nl) = t.
(c)⇒ (a) If H1 is an injection of S into N, then it is a bijection of S onto
H1(S) ⊆ N.
By above theorem (a), HI(S) is countable, whence the set S is countable.
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Theorem 9

The set Q of all rational numbers is countable (or denumerable).

proof
Recall that N× N is countable (by Theorem 6), it follows from last
Theorem 8(b) that there exists a surjection f of N onto N× N.
If g : N× N→ Q+ is the mapping that sends the ordered pair (m, n) into
the rational number having a representation m

n , then g is a surjection onto
Q+. Therefore, the composition g ◦ f is a surjection of N onto Q+, and
Theorem implies that Q+ is a countable set.
Similarly, the set Q− of all negative rational numbers is countable. It
follows that the set Q = Q− ∪ {0} ∪Q+ is countable.
Since Q contains N, it must be a denumerable set.
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Theorem 10

If · An is a countable set for each m ∈ N, then the union A = ∪∞m=1Am is
countable.

Proof. For each m ∈ N, let ϕm be a surjection of N onto Am. We define β
; N× N→ A by

β(m, n) = ϕm(n) .

We claim that β is a surjection. Indeed, if a ∈ A , then there exists a least
m ∈ N such that a ∈ Am, whence there exists a least n ∈ N such that
a = ϕm(n) . Therefore, a = β(m, n) .
Since N× N is countable, it follows from Theorem 8 that there exists a
surjection f : N→ N× N whence β ◦ f is a surjection of N onto A.
Now apply Theorem 8 again to conclude that A is countable.
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Theorem 11

If A is any set, then there is no surjection of A onto the set P(A) of all
subsets of A.

Proof. Suppose that ϕ : A→ P(A) is a surjection. Since ϕ(a) is a subset
of A, either a belongs to ϕ(a) or it does not belong to this set. We let

D = {a ∈ A : a /∈ ϕ(a)}.

Since D is a subset of A, if ϕ is a surjection, then D = ϕ(a0) for some
a0 ∈ A.
We must have either a0 ∈ D or a0 /∈ D. If a0 ∈ D, then since D = ϕ(a0) ,
we must have a0 ∈ ϕ(a0) , contrary to the definition of D. Similarly, if
a0 /∈ D, then a0 /∈ ϕ(a0) so that a0 ∈ D, which is also a contradiction.
Therefore, ϕ cannot be a surjection.
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Algebraic Properties of R

(A1) a + b = b + a for all a, b in R (commutative property of addition);

(A2) (a + b) + c = a + (b + c) for all a, b, c in R (associative property of
addition);

(A3) there exists an element 0 in R such that 0 + a = a and a + 0 = a for
all a in R (existence of a zero element);

(A4) for each a in R there exists an element −a in R such that
a + (−a) = 0 and (−a) + a = 0 (existence of negative elements);
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(M1) a · b = b · a for a 1a, b in R (commutative property of multiplication);

(M2) (a · b) · c = a · (b · c) for all a, b, c in R (associative property of
multiplication);

(M3) there exists an element 1 in R distinct from 0 such that 1 . a = a and
a · 1 = a for all a in R (existence of a unit element);

(M4) for each a 6= 0 in R there exists an element 1/a in R such that
a · (1/a) = 1 and (1/a) · a = 1 (existence of reciprocals);

(D) a · (b + c) = (a · b) + (a · c) and (b + c) · a = (b · a) + (c · a) for all
a, b, c in R (distributive property of multiplication over addition).
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Theorem 12

(a) If z and a are elements in R with z + a = a, then z = 0.
(b) If u and b 6= 0 are elements in R with u · b = b, then u = 1.
(c) If a ∈ R , then a · 0 = 0.

Proof:
(a)

z = z + 0 (∵ (A3))

= z + (a + (−a)) (∵ (A4))

= (z + a) + (−a) (∵ (A2))

= a + (−a) (∵ by hypothesis)

= 0 (∵ (A4))
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(b)
u = u · 1 (∵ (M3))

= u · (b · ( 1

b
)) (∵ (M4))

= (u · b) · ( 1

b
) (∵ (M2))

= b · ( 1

b
) (∵ by hypothesis)

= 1 (∵ (M4))
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(c)
a + a · 0 = a · 1 + a · 0 (∵ (M3))

= a · (1 + 0) (∵ (D))

= a · 1 (∵ (A3))

= a (∵ (M3)

Therefore, by using (a) we can say that a · 0 = 0.
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Theorem 13

(a) If a 6= 0 and b in R are such that a · b = 1 , then b = 1/a.
(b) If a · b = 0, then either a = 0 or b = 0.

Proof:
(a)

b = 1 · b (∵ (M3))

= ((
1

a
) · a) · b (∵ (M4))

= (
1

a
) · (a · b) (∵ (M2))

= (
1

a
) · 1 (∵ by hypotheseis

=
1

a
(∵ (M3))
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(b) Let us assume that a 6= 0. We have to show b = 0.

b = 1 · b (∵ (M3))

= ((
1

a
) · a) · b (∵ (M4) also a 6= 0)

= (
1

a
) · (a · b) (∵ (M2))

= (
1

a
) · 0 (∵ by hypotheseis

= 0 (∵ (c) of theoren 1)
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The operation of subtraction is defined by a− b = a + (−b) for a, b
in R.

Similarly, division is defined for a, b in R with b 6= 0 by a/b = a · (1/b)

We generally write ab instead of a · b. Also We will denote a.a as a2,
in general a multiplied n times denoted by an.

We will denote 1/a by a−1. Also 1/an as a−n
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Rational and irrational numbers

Recall that,

N = {1, 2, 3, . . .}, the set of Natural numbers.

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}, the set of Integers.

Q = {p/q : p ∈ Z, q ∈ N}, the set of all rational numbers.

N ⊂ Z ⊂ Q

Are all the real numbers are rational numbers?
The answer is ”NO”. There are real numbers other then the rational
numbers. we call them irrational numbers.
So we can write the set of real numbers R as Q ∪Qc
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Theorem 14

There does not exist a rational number r such that r2 = 2.

Proof:
We will prove the theorem by method of contradiction. Assume that there
exist integers p, q such that (p/q)2 = 2. We can also assume that p and q
are positive and have no common factors other than 1. (i.e.
gcd(p, q) = 1).
Now (p/q)2 = 2 implies p2 = 2q2 which implies p2 is even. This implies p
is also even. (∵ if p = 2n − 1 is odd, then
p2 = (2n − 1)2 = 4n2 − 4n + 1 = 2(2n2 − 2n + 1)− 1 is also odd.). Now
since p and q does not have 2 as common factors, q must be odd natural
number. (i)
Since p is even, then p = 2m for some m ∈ N. Hence
p2 = 2q2 ⇒ 4m2 = 2q2 ⇒ q2 = 2m2. Therefore q2 is even, which implies
q is even natural number. Which contradicts (i).
This implies our assumption was false. Therefore, there does not exists a
rational number r such that r2 = 2.
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The Order Properties of R

Definition 6

There is a nonempty subset R+ (or P) of R, called the set of positive real
numbers, that satisfies the following properties:
(i) If a, b belong to R+, then a + b belongs to R+.
(ii) If a, b belong to R+, then ab belongs to R+.
(iii) If a belongs to R, then exactly one of the following holds:

a ∈ R+, a = 0, −a ∈ R+.

(iii) is usually called the trichotomy property.
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Definition 7

Let a, b be elements of R.
(a) If a− b ∈ R+, then we write a > b or b < a.
(b) If a− b ∈ R+ ∪ {0}, then we write a ≥ b or b ≤ a.

The trichotomy property implies that for a, b ∈ R exactly one of the
following holds:

a > b, a = b, a < b
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Theorem 15

Theorem Let a, b, c be any elements of R.
(a) If a > b and b > c , then a > c .
(b) If a > b, then a + c > b + c .
(c) If a > b and c > 0, then ca > cb.

If a > b and c < 0, then ca < cb.

proof: (a) If a− b ∈ R+ and b − c ∈ R+, then definition 6(i) implies that
(a− b) + (b − c) = a− c belongs to R+. Hence a > c .
(b) If a− b ∈ R+, then (a + c)− (b + c) = a− b is in R+. Thus
a + c > b + c .
(c) If a− b ∈ R+ and c ∈ R+, then ca− cb = c(a− b) is in P by
definition 6(ii). Thus ca > cb when c > 0.
On the other hand, if c < 0, then −c ∈ R+, so that cbca = (−c)(a− b) is
in R+. Thus cb > ca when c < 0.
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Theorem 16

(a) If a ∈ R and a 6= 0, then a2 > 0.
(b) 1 > 0.
(c) If n ∈ N, then n > 0.

Proof:
(a) By the Trichotomy Property, if a 6= 0, then either a ∈ R+ or −a ∈ R+.
If a ∈ R+, then by definition 6(ii), we have a2 = a · a ∈ R+. Also, if
−a ∈ R+, then a2 = (−a)(−a) ∈ R+. We conclude that if a 6= 0, then
a2 > 0.
(b) From (a) 12 = 1 > 0.
(c) We use Mathematical Induction. The assertion for n = 1 is true by
(b). lf we suppose the assertion is true for the natural number k, then
k ∈ R+, and since 1 ∈ R+, we have k + 1 ∈ R+ by definition 6(i).
Therefore, the assertion is true for all natural numbers.
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Theorem 17

If a ∈ R is such that 0 ≤ a < ε for every ε > 0, then a = 0.

proof:
We’ll use method of contradiction. Suppose that a > 0. Then if we take
ε0 = 1

2a, we have 0 < ε0 < a. Therefore, it is false that a < ε for every
ε > 0. Which contradicts the hypothesis. Hence a = 0.

Theorem 18

If ab > 0, then either
(i) a > 0 and b > 0, or (ii) a < 0 and b < 0.

Proof:
First we note that ab > 0 implies that a 6= 0 and b 6= 0. From the
Trichotomy Property, either a > 0 or a < 0.
If a > 0, then 1/a > 0, and therefore b = (1/a)(ab) > 0.
Similarly, if a < 0, then 1/a < 0, so that b = (1/a)(ab) < 0.
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Examples of Inequalities

(1) Determine the set A of all real numbers x such that 2x + 3 ≤ 6.
We note that we have
x ∈ A ⇔ 2x + 3 ≤ 6 ⇔ 2x ≤ 3 ⇔ x ≤ 3

2 .
Therefore A = {x ∈ R : x ≤ 3

2}.
(2) Determine the set B := {x ∈ R : x2 + x > 2}.
We rewrite the inequality so that Theorem 18 can be applied. Note that

x ∈ B ⇔ x2 + x − 2 > 0⇔ (x − 1)(x + 2) > 0.

Therefore, we either have
(i) x − 1 > 0 and x + 2 > 0, or we have (ii) x − 1 < 0 and x + 2 < 0.
In case (i) we must have both x > 1 and x > −2 which is satisfied if and
only if x > 1.
In case (ii) we must have both x < 1 and x < −2, which is satisfied if and
only if x < −2.
We conclude that B = {x ∈ R : x > 1} ∪ {x ∈ R : x < −2}.
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Use of the Order Properties of R in establishing certain inequalities.

Examples: (1) Let a ≥ 0 and b ≥ 0. Then
a < b ⇔ a2 < b2 ⇔

√
a <
√
b

Proof:
If a = 0. Then a < b implies b > 0. Hence

√
a = 0 <

√
b.

We consider the case where a > 0 and b > 0.
It follows from definition 6(i) that a + b > 0. Since
b2 − a2 = (b − a)(b + a) , it follows from Theorem 15(c) that b − a > 0
implies that b2 − a2 > 0. Also, it follows from Theorem 18 that
b2 − a2 > 0 implies that b − a > 0.
If a > 0 and b > 0, then

√
a > 0 and

√
b > 0. Since a = (

√
a)2 and

b = (
√
b)2, the second implication is a consequence of the first one when

a and b are replaced by
√
a and

√
b, respectively.
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Example: (2) (b) If a and b are positive real numbers, then their
arithmetic mean is 1

2(a + b) and their geometric mean is
√
ab. The

Arithmetic-Geometric Mean Inequality for a, b is
√
ab ≤ 1

2(a + b)

with equality occurring if and only if a = b.
Proof:
Note that if a > 0, b > 0, and a 6= b, then

√
a > 0,

√
b > 0, and√

a 6=
√
b.

Therefore it follows from Theorem 16(a) that (
√
a−
√
b)2 > 0. Expanding

this square, we obtain
a− 2

√
ab + b > 0 ⇒

√
ab < 1

2(a + b) .

If a = b, then
√
ab =

√
a · a =

√
a2 = a = 1

2(a + a) = 1
2(a + b).
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On the other hand, suppose that a > 0, b > 0 and that
√
ab = 1

2(a + b).
Then, squaring both sides and multiplying by 4, we obtain

4ab = (a + b)2 = a2 + 2ab + b2 ⇒ 0 = a2 − 2ab + b2 = (a− b)2

But this equality implies that a = b. (Why?) Thus, equality in (2) implies
that a = b.
Remark: The general Arithmetic-Geometric Mean Inequality for the
positive real numbers a1, a2, . . . , an is

(a1a2 · · · an)1/n ≤ a1 + a2 + · · ·+ an
n

with equality occurring if and only if a1 = a2 = · · · = an.
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(3) Bernoulli’s Inequality.
If x > −1, then (1 + x)n ≥ 1 + nx for all n ∈ N (*)
We’ll use Mathematical Induction. The case n = 1 yields equality, so the
statement is true in this case. Next, we assume the inequality (*) is true
for k ∈ N and will deduce it for k + 1. Indeed, the assumptions that
(1 + x)k ≥ 1 + kx and that 1 + x > 0 imply that

(1 + x)k+1 = (1 + x)k · (1 + x)

≥ (1 + kx) · (1 + x) = 1 + (k + 1)x + kx2

≥ 1 + (k + 1)x

Thus, inequality (*) holds for n = k + 1. Therefore, (*) holds for all n ∈ N
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Absolute Value and the Real Line

Definition 8

The absolute value of a real number a, denoted by |a|, is defined by

|a| =


a if a > 0
0 if a = 0
−a if a < 0

For example, |5| = 5 and | − 8| = 8.
We see from the definition that |a| ≥ 0 for all a ∈ R, and that |a| = 0 if
and only if a = 0.
Also | − a| = |a| for all a ∈ R.
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Theorem 19

(a) |ab| = |a||b| for all a, b ∈ R
(b) |a|2 = a2 for all a ∈ R
(c) If c ≥ 0, then |a| ≤ c if and only if −c ≤ a ≤ c
(d) −|a| ≤ a ≤ |a| for all a ∈ R

Proof. (a) If either a or b is 0 , then both sides are equal to 0 . There are
four other cases to consider.
If a > 0, b > 0, then ab > 0, so that |ab| = ab = |a||b|.
If a > 0, b < 0, then ab < 0, so that |ab| = −ab = a(−b) = |a||b|.
The remaining cases can be proved similarly.
(b) since a2 ≥ 0, we have a2 =

∣∣a2∣∣ = |aa| = |a||a| = |a|2
(c) If |a| ≤ c , then we have both a ≤ c and −a ≤ c , which is equivalent to
−c ≤ a ≤ c Conversely, if −c ≤ a ≤ c , then we have both a ≤ c and
−a ≤ c , so that |a| ≤ c
(d) Take c = |a| in part (c).
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Theorem 20

Triangle Inequality If a, b ∈ R, then |a + b| ≤ |a|+ |b|

Proof. From (d) part of last theorem, we have −|a| ≤ a ≤ |a| and
−|b| ≤ b ≤ |b|. On adding these inequalities, we obtain

−(|a|+ |b|) ≤ a + b ≤ |a|+ |b|

Hence, by (c) part of last theorem, we have |a + b| ≤ |a|+ |b| It can be
shown that equality occurs in the Triangle Inequality if and only if ab > 0
which is equivalent to saying that a and b have the same sign. There are
many useful variations of the Triangle Inequality. Here are two.
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Theorem 21 (Corollary)

If a, b ∈ R, then
(a) ‖a| − |b‖≤ |a− b|
(b) |a− b| ≤ |a|+ |b|

Proof. (a) We write a = a− b + b and then apply the Triangle Inequality
to get |a| = |(a− b) + b| ≤ |a− b|+ |b|.
Now subtract |b| to get |a| − |b| ≤ |a− b|.
Similarly, from |b| = |b − a + a| ≤ |b − a|+ |a|, we obtain
−|a− b| = −|b − a| ≤ |a| − |b|.
If we combine these two inequalities, using (c) part of Theorem 20, we get
the inequality in (a)
(b) By replacing b in the Triangle Inequality by −b we get
|a− b| ≤ |a|+ | − b|.
since | − b| = |b| we obtain the inequality in (b).
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Definition 9

The distance between elements a and b in R is |a− b|.

Definition 10

Let a ∈ R and ε > 0. Then the ε -neighborhood of a is the set

Nc(a) = {x ∈ R : |x − a| < ε}

Theorem 22

Let a ∈ R. If x belongs to the neighborhood Nc(a) for every ε > 0, then
x = a

Proof: If a particular x satisfies |x − a| < ε for every ε > 0, then it follows
from 17 that |x − a| = 0, and hence x = a
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The Completeness Property of R

Definition 11

Let S be a nonempty subset of R
(a) The set S is said to be bounded above if there exists a number u ∈ R
such that s ≤ u for all s ∈ S . Each such number u is called an upper
bound of S .
(b) The set S is said to be bounded below if there exists a number w ∈ R
such that w ≤ s for all s ∈ S . Each such number w is called a lower
bound of S .
(c) A set is said to be bounded if it is both bounded above and bounded
below. A set is said to be unbounded if it is not bounded.
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For example, the set S := {x ∈ R : x < 2} is bounded above; the number
2 and any number larger than 2 is an upper bound of S . This set has no
lower bounds, so that the set is not bounded below. Thus it is unbounded
(even though it is bounded above)
If a set has one upper bound, then it has infinitely many upper bounds,
because if u is an upper bound of S , then the numbers u + 1, u + 2, . . . are
also upper bounds of S . (A similar observation is valid for lower bounds.
In the set of upper bounds of S and the set of lower bounds of S , we
single out their least and greatest elements, respectively, for special
attention in the following definition.
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Definition 12

Let S be a nonempty subset of R
(a) If S is bounded above, then a number u is said to be a supremum (or
a least upper bound) of S if it satisfies the conditions:
(1) u is an upper bound of S , and
(2) if v is any upper bound of S , then u ≤ v
(b) If S is bounded below, then a number w is said to be an infimum (or a
greatest lower bound) of S if it satisfies the conditions:
(1’) w is a lower bound of S , and
(2’) if t is any lower bound of S , then t ≤ w
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There can be only one supremum of a given subset S of R.
For, suppose that u1 and u2 are both supremum of S . If u1 < u2, then the
hypothesis that u2 is a supremum implies that u1 cannot be an upper
bound of S . Similarly, we see that u2 < u1 is not possible. Therefore, we
must have u1 = u2.
A similar argument can be given to show that the infimum of a set is
uniquely determined.
If the supremum or the infimum of a set S exists, we will denote them by
sup S and inf S or sup (S) and inf (S)
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Lemma A number u is the supremum of a nonempty subset S of R if and
only if u satisfies the conditions:
(1) s ≤ u for all s ∈ S
(2) if v < u, then there exists s ′ ∈ S such that v < s ′

Lemma An upper bound u of a nonempty set S in R is the supremum of S
if and only if for every ε > 0 there exists an sc ∈ S such that u − ε < sc .
Proof. If u is an upper bound of S that satisfies the stated condition and
if v < u, then we put ε := u − v . Then ε > 0, so there exists sc ∈ S such
that v = u − ε < st . Therefore, v is not an upper bound of S , and we
conclude that u = supS
Conversely, suppose that u = supS and let ε > 0. since u − ε < u, then
u − ε is not an upper bound of S . Therefore, some element sε of S must
be greater than u − ε; that is, u − ε < sc)
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Examples
(a) If a nonempty set S1 has a finite number of elements, then it can be
shown that S1 has a largest element u and a least element w . Then
u = supS1 and w = inf S1 and they are both members of S1.
(b) The set S2 := {x : 0 ≤ x ≤ 1} clearly has 1 for an upper bound. We
prove that 1 is its supremum as follows. If v < 1, there exists an element
s ′ ∈ S2 such that v < s ′. (Name one such element s ′.) Therefore v is not
an upper bound of S2 and, since v is an arbitrary number v < 1, we
conclude that supS2 = 1. It is similarly shown that inf S2 = 0. Note that
both the supremum and the infimum of S2 are contained in S2
(c) The set S3 := {x : 0 < x < 1} clearly has 1 for an upper bound. Using
the same argument as given in (b), we see that sup S3 = 1. In this case,
the set S3 does not contain its supremum. Similarly, inf S3 = 0 is not
contained in S3
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The Completeness Property of R: Every nonempty set of real numbers
that has an upper bound also has a supremum in R.
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Theorem 23 (Archimedean Property)

If x ∈ R, then there exists nx ∈ N such that x ≤ nx

Proof. If the statement is false, then n ≤ x for all n ∈ N; therefore, x is an
upper bound of N.
Therefore, by the Completeness Property, the nonempty set N has a
supremum u ∈ R.
Subtracting 1 from u gives a number u − 1, which is smaller than the
supremum u of N.
Therefore u − 1 is not an upper bound of N, so there exists m ∈ N with
u − 1 < m.
Adding 1 gives u < m + 1.
And since m + 1 ∈ N, this inequality contradicts the fact that u is an
upper bound of N.
Which proves that the given statement is correct.
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Corollary 1

Corollary If S := {1/n : n ∈ N}, then inf S = 0

Proof. since S 6= ∅ is bounded below by 0 , it has an infimum and we let
w = inf S . Since S is bounded below by 0, inf S = w ≥ 0.
For any ε > 0, the Archimedean Property implies that there exists n ∈ N
such that 1/ε < n, which implies 1/n < ε.
Therefore we have

0 ≤ w ≤ 1/n < ε

But since ε > 0 is arbitrary, it follows from known Theorem that w = 0.

Nishant Parmar (GSCCU) Analysis-1 64 / 67



Corollary 2

If t > 0, there exists nt ∈ N such that 0 < 1/nt < t

Proof. since inf {1/n : n ∈ N} = 0 and t > 0, then t is not a lower bound
for the set {1/n : n ∈ N}. Thus there exists nt ∈ N such that 0 < 1/nt < t

Corollary 3

If y > 0, there exists ny ∈ N such that ny − 1 ≤ y ≤ ny

Proof. Using the Archimedean Property we can say that the subset
Ey = {m ∈ N : y < m} of N is not empty.
By the Well-Ordering Property Ey has a least element, which we denote by
ny .
Then ny − 1 does not belong to Ey , and hence we have ny − 1 ≤ y < ny .
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Theorem 24

There exists a real number x such that x2 = 2.

Theorem 25 (The Density Theorem)

If x and y are any real numbers with x < y , then there exists a rational
number r ∈ Q such that x < r < y

Proof. Without loss of generality assume that x > 0.
Since y − x > 0, it follows from Corollary 2 that there exists n ∈ N such
that 1/n < y − x . Therefore, we have nx + 1 < ny .
If we apply Corollary 3 to nx > 0, we get m ∈ N with m − 1 ≤ nx < m.
Therefore, m ≤ nx + 1 < ny , and nx < m < ny .
Hence, the rational number r = m/n satisfies x < r < y .
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Corollary 4

If x and y are real numbers with x < y , then there exists an irrational
number z such that x < z < y

Proof. If we apply the Density Theorem to the real numbers x/
√

2 and
y/
√

2, we obtain a rational number r 6= 0, such that

x√
2
< r <

y√
2

Then z = r
√

2 is irrational and satisfies x < z < y .
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