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Disclaimer:

The material provided in this file is purely for learning and sharing of
knowledge purpose. Authors does not claim to cover all the prescribed
syllabus. For reference and examination purpose the reference books
prescribed in official syllabus of the university will be considered final.
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Relation

Definition 1 (Relation)

For the nonempty subsets A and B, any subset S of A× B is called a
relation from A to B.

For a ∈ A and b ∈ B, (a, b) ∈ S , then we say that ”a is related to b by the
relation S”
The trivial relations S = φ and S = A× B are not very important. So
from now whenever we use relation we mean proper relation. i.e.
S 6= φ, S 6= A× B.

Nishant Parmar (GSCCU) Abstract Algebra 3 / 49



Example 1

Let A = {1, 2, 3} and B = {a, b, c, d}, then
S = {(1, a), (2, b), (3, a), (2, d)} is a relation.

Example 2

Let A = {1, 2, 3} and B = {a, b, c}, then
S = {(1, a), (2, b), (3, a), (2, c)} is a relation.

Example 3

Let A = {1, 2, 3}, then
S = {(1, 1), (2, 2), (3, 3), (2, 1)} is a relation on A.

Example 4

For Z, S = {(a, b) : a− b is odd number}. Then S is a relation on Z
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Definition 2 (Equivalence Relation)

A relation S defined on a set A is said to be an equivalence relation if it
satisfies the following three properties.

S is said to be reflexive if for each a ∈ A, aSa i.e. every element of A
is related to itself.

S is said to be symmetric if for each a, b ∈ A, aSb ⇒ bSa.

S is said to be transitive if for each a, b, c ∈ A, aSb and bSc ⇒ aSc.

Although we are free to use any notation, we’ll mostly use ∼ to denote an
equivalence relation.

Nishant Parmar (GSCCU) Abstract Algebra 5 / 49



Example 5

Let A = {1, 2, 3}, then
S = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)} is an equivalence relation on A.

Example 6

Let A = {1, 2, 3}, then
S = {(1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (2, 3), (3, 2)} is also an equivalence
relation on A.

Example 7

Let A = {1, 2, 3}, then
S = {(1, 1), (2, 2), (3, 3), (1, 2)} is NOT an equivalence relation on A.

Example 8

For Z, S = {(a, b) : a− b is even number}. Then S is an equivalence
relation on Z
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Definition 3

Let ∼ be an equivalence relation on A and a ∈ A. Then the set
{x ∈ A : x ∼ a} is called an equivalence class of a. It is denoted by cl(a)
or [a].

Example 9

In example 5, [1] = {1, 2}. also, [3] = {3}

Example 10

In example 8,
[0] = {x ∈ Z : x − 0 is even number} = {x ∈ Z : x is even number}
Also, [1] = {x ∈ Z : x − 1 is even number} = {x ∈ Z : x is odd number}
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Some important observations:

For any a ∈ A, a ∈ [a]⇒ [a] 6= φ. Also A ⊂
⋃
a∈A

[a]

For each a ∈ A, [a] ⊂ A⇒
⋃
a∈A

[a] ⊂ A.

Therefore, A =
⋃
a∈A

[a].

For a, b ∈ A, Let a ∼ b.
For any
x ∈ [a]⇒ x ∼ a⇒ x ∼ b(∵∼ is transitive)⇒ x ∈ [b]⇒ [a] ⊂ [b]
Similarly for any
x ∈ [b]⇒ x ∼ b ⇒ x ∼ a(∵∼ is symmetric and transitive)
⇒ x ∈ [a]⇒ [b] ⊂ [a]
Hence, if a ∼ b then [a] = [b]
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Lemma 1

For a, b ∈ A and an equivalence relation ∼ on A. Either [a] = [b] or
[a] ∩ [b] = φ i.e. equivalence classes are either equal or disjoint.

As last point above we have showed that if a ∼ b, then [a] = [b]. Now we
will show that if a 6∼ b, then [a] ∩ [b] = φ.
Suppose a 6∼ b. but x ∈ [a] ∩ [b]
⇒ x ∈ [a] and x ∈ [b]
⇒ x ∼ a and x ∼ b
⇒ a ∼ x and x ∼ b (∵∼ is symmetric)
⇒ a ∼ b (∵∼ is transitive)
Which contradicts our assumption. Hence, if a 6∼ b, then [a] ∩ [b] = φ.
This proves the result.
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Binary operations

Definition 4

For a nonempty set A, a mapping A× A is called a binary operation on A.

Example 11

The operation ∗ defined on Z as follows is a binary operation.
m ∗ n = m − n for m, n ∈ Z

Example 12

The operation ∗ defined on N as follows is NOT a binary operation.
m ∗ n = m − n for m, n ∈ N
Because, for 2, 3 ∈ N, 2− 3 = −1 6∈ N

Example 13

The operation ∗ defined on N as follows is a binary operation.
m ∗ n = min{m, n} for m, n ∈ N
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Definition 5

The binary operation ∗ on a nonempty setA is said to be commutative if
a ∗ b = b ∗ a, ∀a, b ∈ A

Example 14

The usual addition operation defined on Z is commutative. because for
any m, n ∈ Z, m + n = n + m.

Example 15

The usual multiplication operation defined on R is commutative. because
for any m, n ∈ R, m.n = n.m.

Example 16

The subtraction operation defined on Z in Example 11 is NOT
commutative. because for any 2− 3 = −1 6= 3− 2.
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Definition 6

The binary operation ∗ on a nonempty setA is said to be associative if
(a ∗ b) ∗ c = a ∗ (b ∗ c), ∀a, b, c ∈ A

There are some operations which are not associative, but we’ll not discuss
them here. Most operation we shall use in this course are associative.
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Definition 7

Suppose ∗ and o are two binary operations on a set S . If for every
a, b, c ∈ A

a ∗ (b ◦ c) = (a ∗ b) ◦ (a ∗ c)
(b ◦ c) ∗ a = (b ∗ a)o(c ∗ a)

then the binary operation ∗ is said to be distributive over o.

Example 17

Union and intersection are binary operations in P(U) and for
A,B,C ∈ P(U), we have

A ∩ (B ∪ C ) = (A ∩ B) ∪ (A ∩ C )
(B ∪ C ) ∩ A = (B ∩ A) ∪ (C ∩ A)
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Definition 8

Let ∗ be the binary operation in A. If for an element e in A and for each a
of A, a ∗ e = e ∗ a = a, then e is called an identity element of A for binary
operation ∗

Example 18

we know that e is a 0 for addition and e is a 1 for multiplication in
Z,Q,R, and C.

Theorem 1

There can be at most one identity element for a binary operation ∗ on A.

Proof: If possible, suppose e and e ′ are the two identity elements for
binary operation ∗ on A. Now e being an identity element, e ∗ e ′ = e ′.
Similarly, e ′ being an identity element,

e ∗ e ′ = e i.e. e = e ′
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Definition 9

Let e be the identity element for binary operation ∗ on A. If for a given
element x ∈ A, there exists an element y ∈ A such that x ∗ y = y ∗ x = e,
then y is called an inverse of x. Elements for inverse exist are called
non-singular elements.

Theorem 2

Theorem 5.3 .2 If the binary operation ∗ on A with identity e is
associative, then a given element a ∈ A can have at most one inverse.

Proof: If b and c are inverses of a in A, then, we have, b ∗ a = a ∗ b = e
and c ∗ a = a ∗ c = e. Now,

b = b ∗ e = b ∗ (a ∗ c) = (b ∗ a) ∗ c = e ∗ c = c
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Theorem 3

If for an associative binary operation o on A, a ∈ A is nonsingular then its
inverse a−1 is also non-singular and

(
a−1
)−1

= a

Proof : Here a being non-singular, a o a−1 = a−1 o a = e. Thus, a−1 is
also non-singular and its unique inverse is a, i.e.

(
a−1
)−1

= a

If + is associative binary operation and a is non-singular element for +
then −a is also non-singular with −(−a) = a
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Theorem 4

For an associative binary operation ∗ on A, if a and b are non-singular
then a ∗ b is also non-singular with (a ∗ b)−1 = b−1 ∗ a−1

Proof: Here a and b being non-singular, a−1 and b−1 exist. Using
associativity of ∗

(a ∗ b) ∗
(
b−1 ∗ a−1

)
= a ∗

[
b ∗
(
b−1 ∗ a−1

)]
= a ∗

[(
b ∗ b−1

)
∗ a−1

]
= a ∗

[
e ∗ a−1

]
= a ∗ a−1

= e

Similarly, we have (
b−1 ∗ a−1

)
∗ (a ∗ b) = e

Hence by definition, (a ∗ b)−1 = b−1 ∗ a−1
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Definition 10

A binary operation ∗ defined on A is said to satisfies
the left cancellation law if for every a, b, c ∈ A

a ∗ b = a ∗ c ⇒ b = c .
the right cancellation law if for every a, b, c ∈ A

b ∗ a = c ∗ a⇒ b = c .
It is said to satisfy the cancellation law if it satisfies both left and right

cancellation law.
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Theorem 5 (Division Algorithm)

For given a, b( 6= 0) ∈ Z, there exist unique integers q and r such that
a = bq + r , 0 ≤ r < |b|

Here a is called the dividend, b the divisor, q the quotient, and r the
remainder obtained on dividing a by b. Clearly, the remainder r = 0 iff b I
a.
First we consider a special case of this theorem.

Theorem 6 (Spacial case of division algorithm)

For a ∈ Z and b ∈ N, there exist unique integers q and r such that
a = bq + r , 0 ≤ r < b

Proof: Define the set M = {a + bx |x ∈ Z}. For a ≥ 0, a + b > 0 and
a + b ∈ M. For a < 0, a + b(−a) = a(1− b) ≥ 0 (here a < 0 and (1− b)
≤ 0 ) and a + b(−a) ∈ M.
In both these possibilities for a,M contains non-negative integers and
consequently the set L = {y ∈ M|y ≥ 0} is nonempty.
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By the well-ordering principle, L has the least element, say, r . Here,
r ∈ L ⊂ M gives us r ≥ 0 and for some x (say x = −q), r = a− bq or
a = bq + r .
Now we show that r < b. For r ≥ b, 0 ≤ r − b = a− bq − b =
a− b(q + 1) ∈ M and hence r − b ∈ L, a contradiction to the definition of
r Hence r < b To prove uniqueness of q and r , suppose

a = bq + r , 0 ≤ r < b

and
a = bq1 + r1, 0 ≤ r1 < b

We will show that q = q1 and r = r1. For q < q1, q and q1 being integers,
(q + 1) ≤ q1. This gives us

0 ≤ r1 = a− bq1 ≤ a− b(q + 1) = a− bq − b = r − b < 0

which is a contradiction.
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Similarly q1 < q gives a contradiction. Hence q = q1
Now, bq + r = a = bq + r1 or r = r1.
Proof of Theorem 5: For b > 0, this theorem follows from Theorem 6 For
b < 0, a and |b| satisfy the hypothesis of Theorem 6.2 .4 and hence we get
unique integers q1 and r such that a = |b|q1 + r with 0 ≤ r < |b|.
For b < 0, b = −b. Taking q = −q1, we have a = bq + r with 0 ≤ r < |b|
and this completes the proof of the theorem.
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Congruence Relation

Definition 11

For n ∈ N, and integers a, b ∈ Z, if n|(a− b), then we say that a is
congruent to b with respect to n. We write it as a ≡ b(mod n).

Example 19

5 divides 13− (−17) = 30. Hence 13 ≡ −17(mod 5)

Example 20

3 divides 11− 2 = 9. Hence 11 ≡ 2(mod 3)
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Lemma 2 (without proof)

For a fixed n ∈ N, congruence modulo n is an equivalence relation on Z.

Theorem 7

For a fixed n ∈ N, congruence modulo n, equivalence relation has exactly
n distinct eqivalence classes.

Proof: By division algorithm, a = qn + r , 0 ≤ r < n. Hence a− r = qn or
n|(a− r), i.e. a ≡ r(modn). By a known theorem,[a] = [r ] .
Thus for a given integer a, we have a unique integer r , 0 ≤ r < n such
that [a] = [r ]. In other words, we have at most n distinct congruence
classes namely [0], [1], . . . , [n − 1].
Now we show that these congruence classes are distinct. If possible,
suppose two congruence classes say, [i ] and [j ] are equal. Here we can take
0 ≤ i < j < n. The [i ] = [j ] gives i ≡ j(modn) or n|(j − i) which is
impossible as (j − i) is less than n.
This contradictory result shows that we have exactly n distinct congruence
classes [0], [1], . . . , [n − 1]
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Example 21

For n = 5, we have

[0] = {. . . ,−10,−5, 0, 5, 10, . . .} = {5n|n ∈ Z}
[1] = {. . . ,−9,−4, 1, 6, 11, . . .} = {5n + 1|n ∈ Z}
[2] = {. . . ,−8,−3, 2, 7, 12, . . .} = {5n + 2|n ∈ Z}
[3] = {. . . ,−7,−2, 3, 8, 13, . . .} = {5n + 3|n ∈ Z}
[4] = {. . . ,−6,−1, 4, 9, 14, . . .} = {5n + 4|n ∈ Z}

Also
Z = [0] ∪ [1] ∪ [2] ∪ [3] ∪ [4] and [i ] ∩ [j ] = φ

for i 6= j , 0 ≤ i , j ≤ 4
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We denote Zn = {[0], [1], . . . , [n − 1]}, call it the set of integers modulo
n

We define addition +n and multiplication ·n in Zn as follows.
For [i ], [j ] ∈ Zn

[i ] +n [j ] = [i + j ]

[i ] ·n [j ] = [ij ]

The addition and multiplication defined by the above equations are called
addition modulo n and multiplication modulo n, respectively.

Example 22

[2] +5 [8] = [10] = [0]; [−3] +5 [16] = [13] = [3]

[2] ·5 [8] = [16] = [1]; [−3] ·5 [16] = [−48] = [2]
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We can use tables for quickly evaluating modulo n operations.

Example 23 (+6 operation on Z6)

+6 [0] [1] [2] [3] [4] [5]

[0] [0] [1] [2] [3] [4] [5]
[1] [1] [2] [3] [4] [5] [0]
[2] [2] [3] [4] [5] [0] [1]
[3] [3] [4] [5] [0] [1] [2]
[4] [4] [5] [0] [1] [2] [3]
[5] [5] [0] [1] [2] [3] [4]
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Example 24 (·6 operation on Z6)

·6 [0] [1] [2] [3] [4] [5]

[0] [0] [0] [0] [0] [0] [0]
[1] [0] [1] [2] [3] [4] [5]
[2] [0] [2] [4] [0] [2] [4]
[3] [0] [3] [0] [3] [0] [3]
[4] [0] [4] [2] [0] [4] [2]
[5] [0] [5] [4] [3] [2] [1]
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Definition 12

If an operation ∗ defined on a nonempty set G satisfies the following
postulates

1 ∗ is a binary operation on G

2 For a, b, c ∈ G , a ∗ (b ∗ c) = (a ∗ b) ∗ c( i.e. ∗ is associative )

3 There exists an element e in G such that a ∗ e = e ∗ a = a for each
a ∈ G (i.e. there is existence of an identity element for G ).

4 For each a ∈ G , there exists an element a′ ∈ G such that a ∗ a′ =
a′ ∗ a = e (i.e. there is existence of an inverse for each element)

then G is called a group under the binary operation ∗. It is denoted by
(G , ∗).
If ∗ is commutative, i.e. a ∗ b = b ∗ a, ∀a, b ∈ G. Then (G , ∗) is called a
commutative group or abelian group.
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Example 25

(Z,+) where + is usual addition of integers is a group.
Here 0 is identity element and −a is inverse for any element a.
Similarly (Q,+),(R,+),(C,+) are also group.

Example 26

(Q∗, ·) where . is usual multiplication is a commutative
group.(Q∗ = Q \ {0}).
Here 1 is identity element and 1/a is inverse for any element a.
Similarly (R∗, ·),(C∗, ·), are also commutative group.

Example 27

For a fixed positive integer n, Zn = {[0], [1], . . . , [n − 1]}. Then (Zn,+n)
is a commutative group.
[0] is identity and [n − i ] is an inverse for [i ].
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Example 28

For a fixed prime integer p ∈ N, Z∗n = {[1], . . . , [n − 1]}. Then (Z,n·n) is a
commutative group.

Example 29

For a fixed given positive integer n, the set Rn is defined as
Rn = {z ∈ C|zn = 1} .Rn is the set of all nth complex roots of unity. If
ρ = e2πin, then Rn =

{
ρ, ρ2, . . . , ρn−1, ρn = 1

}
.

Rn is a group under multiplication because
(i) For a, b ∈ Rn if a = ρi and b = ρj , 1 ≤ i , j ≤ n then ab = ρi+j For
i + j ≤ n, ab ∈ Rn.
For i + j ≥ n, if i + j = qn + r , 0 ≤ r < n then
ab = ρi+j = ρqn+r = (ρn)q ρr = ρr ∈ Rn, i.e. multiplication becomes a
binary operation in Rn

(ii) Rn being a subset of C, multiplication is associative.
(iii) 1 ∈ Rn becomes an identity element for multiplication.
(iv) For a = ρi ∈ Rn, 1 ≤ i < n, b = ρn−i ∈ Rn with ab = ba = 1.
We will denote this group by (Rn; )
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Example 30

Let us denote Mn = {[(aij)]n×n : aij ∈ R} = the set of all n × n real
matrices.
Under the operation matrix addition +, (Mn,+) is a group.
Where n× n zero matrix is an identity and for any element [aij ]n×n inverse
is [−aij ]n×n.
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Example 31

Let us dentoe GL2(R) = general linear group of order 2 on R = Group of
all 2× 2 real invertible matrices with matrix multiplication operation.

A matrix

[
a b
c d

]
is invertible iff it’s determinant is non-zero. i.e.

ad − bc 6= 0.

The identity matrix I2 =

[
1 0
0 1

]
is identity of the group. And for any

matrix A it’s inverse matrix A−1 is inverse of that matrix in the group.
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Elementary properties of a Group

Theorem 8

In a group G
(i) Identity element is unique.
(ii) Inverse of an element is unique.

(iii) If the inverse of an element a is denoted by a−1, then
(
a−1
)−1

= a
(iv) For a, b ∈ G , (a ∗ b)−1 = b−1 ∗ a−1
(v) Both cancellation laws hold good for ∗ in G. That is, for a, b, c ∈ G
a ∗ b = a ∗ c or b ∗ a = c ∗ a implies b = c
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Theorem 9

Theorem 7.3.2 In a group G , the equations a ∗ x = b and y ∗ a = b,
where a, b ∈ G , have unique solutions.

a ∗
(
a−1 ∗ b

)
=
(
a ∗ a−1

)
∗ b (associative law)

= e ∗ b (definition of a−1)
= b (property of e )

Thus x = a−1 ∗ b is a solution of a ∗ x = b
To prove uniqueness of this solution, suppose a ∗ x = b and a ∗ x1 = b
Then a ∗ x = a ∗ x1. By cancellation law in G , x = x1
The equation y ∗ a = b can be considered in a similar way.

Nishant Parmar (GSCCU) Abstract Algebra 34 / 49



Equivalent definitions of a group

Theorem 10

If for a binary operation ∗ defined in G
(i) ∗ is associative
(ii) there exists an element e1 ∈ G such that a ∗ e1 = a for each a ∈ G
(i.e. the existence of right identity in G ), and
(iii) for each a ∈ G , there exists an element b ∈ G such that a ∗ b = e1
(i.e. the existence of right inverse for each element in G ),
then G is a group.

Proof: First, we prove the right cancellation law in G .
Suppose x ∗ a = y ∗ a for x , y , a ∈ G . By assumption (iii), there exists an
element b ∈ G such that a ∗ b = e1. Now

(x ∗ a) ∗ b = (y ∗ a) ∗ b
x ∗ (a ∗ b) = y ∗ (a ∗ b) (by assumption (i))
x ∗ e1 = y ∗ e1
x = y (by assumption (ii))
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Also
(e1 ∗ a) ∗ b = e1 ∗ (a ∗ b)∗

= e1 ∗ e1
= e1 = a ∗ b

By the right cancellation law, e1 ∗ a = a. Thus for each a ∈ G , a ∗ e1 =
e1 ∗ a = a, i.e. e1 is an identity element in G . Again

(b ∗ a) ∗ b = b ∗ (a ∗ b)

= b ∗ e1
= b

= e1 ∗ b

Therefore by the right cancellation law, b ∗ a = e1. In other words, a ∗ b
= b ∗ a = e1 or b is an inverse of a. Thus each element in G has an inverse
in G .
Hence, G is a group.
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Theorem 11

If for a binary operation ∗ defined in G
(i) ∗ is associative and
(ii) For each a, b ∈ G , the linear equations a ∗ x = b and y ∗ a = b have
solutions in G
then (G , ∗) is a group.

Proof: Let a ∈ G . The linear equation a ∗ x = b has a solution in G for
each a, b in G . In particular taking b = a, the equation a ∗ x = a has also
a solution in G . If we denote this solution by e1, then

a ∗ e1 = a
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If c is any element of G , then the equation y ∗ a = c has a solution, say,
y1 in G , i.e. y1 ∗ a = c. Now

(y1 ∗ a) ∗ e1 = c ∗ e1
y1 ∗ (a ∗ e1) = c ∗ e1

y1 ∗ a = c ∗ e1 by (7.4.1)

c = c ∗ e1

Thus c = c ∗ e1 for any element c ∈ G or e1 is a right identity for ∗ in G
Also the equation a ∗ x = e1 has a solution in G . Clearly, this solution will
be a right inverse of a, i.e. each element has a right inverse for ∗ in G . By
Theorem 7.4.1,G is a group under ∗
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Theorem 12

Let ∗ be a binary operation on a finite set G . If
(i) ∗ is associative and
(ii) both right and left cancellation laws hold for ∗ in G
then (G , ∗) is a group.

Proof: Suppose G = {a1, a2, . . . , an} . For any element a ∈ G

a ∗ a1, a ∗ a2, . . . , a ∗ an ∈ G

and hence
S = {a ∗ a1, a ∗ a2, . . . , a ∗ an} ⊂ G
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The elements of S are distinct. Suppose a ∗ ai = a ∗ aj , 1 ≤ i < j ≤ n.
By the left cancellation law, ai = aj which is impossible as ai and aj are
distinct elements of G .
Now S ⊂ G , S and G both have n elements, i.e. S = G . Thus a ∈ G = S
implies a = a ∗ ak for some k. Also a ∗ a = (a ∗ ak) ∗ a = a∗ (ak ∗ a) .
Again by the left cancellation law, a = ak ∗ a, i.e. a = ak ∗ a = a ∗ ak
If b is any element of G then

a ∗ b = (a ∗ ak) ∗ b = a ∗ (ak ∗ b)

which gives b = ak ∗ b by the cancellation law. Similarly b ∗ ak = b
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In short, ak is an identity element for ∗ in G ak ∈ G = S implies
ak = a ∗ aj for some aj ∈ G . Also

ak ∗ a = (a ∗ aj) ∗ a or a ∗ ak = a ∗ (aj ∗ a)

The cancellation law gives ak = aj ∗ a, i.e. ak = a ∗ aj = aj ∗ a.
In other words, each element has an inverse in G .
Thus G is a group under ∗.
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Theorem 13

Theorem 7.5.2 Suppose a, b ∈ G . If ab = ba, then (i) abn = bna (ii)
(ab)n = anbn for each n ∈ N

Proof: We prove this theorem with the help of the first principle of
mathematical induction.
(i) For n = 1, ab = ba which is true by assumption. Now suppose the
result is true for n = k , i.e. abk = bka. Then
a
(
bk+1

)
= a

(
bkb
)

(by definition of power)
=
(
abk
)
b (by associative law)

=
(
bka
)
b (by assumption)

= bk(ab) (by associative law)
= bk(ba) (by assumption)
=
(
bkb
)
a (by associative law)

= bk+1a (by definition of power)
That is, the result is also true for n = k + 1
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(ii) The result is obviously true for n = 1. Now suppose the result is true
for n = k , i.e. (ab)k = akbk . Then

(ab)k+1 = (ab)k(ab)

=
(
akbk

)
(ab)†+

=
(
akbka

)
b

=
(
akabk

)
b

= ak+1
(
bkb
)

= ak+1bk+1

That is, the result is true for n = k + 1 as well.
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Theorem 14

Suppose a ∈ G and m ∈ N. For each n ∈ Z (i) aman = am+n (ii)
(am)n = amn

Proof : (i) We divide the proof into two cases according as n ≥ 0 and
n < 0
Case 1: Suppose n ≥ 0 since ama0 = ame = am = am+0, the result is true
for n = 0. Also, the definition of power am+1 = ama shows that the result
is true for n = 1 as well.
Now if the result is true for n = k , i.e. amak = am+k , then

am+k+1 = a(m+k)+1

= am+ka

=
(
amak

)
a

= am
(
aka
)

= amak+1
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Thus the result is true for n = k + 1. Hence it is true for each natural
number n by the first principle of mathematical induction.
Case 2 : n < 0. Suppose n = −p By the Law of Trichotomy, we have one
of the three possibilities, namely

p = m or p > m or p < m

For p = m, and n = −m

am+n = am−m

= a0

= e

= em

=
(
aa−1

)m
= am

(
a−1
)m

= ama−m

= aman
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If p > m, then p = m + k for some positive integer k . Here

am+n = am−p

= a−k

=
(
a−1
)k

= e
(
a−1
)k

= em
(
a−1
)k

=
(
aa−1

)m (
a−1
)k

=
[
am
(
a−1
)m] (

a−1
)k

= am
[(
a−1
)m (

a−1
)k]

= am
(
a−1
)p

= am
(
a−p
)

= am · an
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Finally, if p < m, then m = p + r for some positive integer r . Again

am+n = am−p

= ar

= arerep

= ar
[(
aa−1

)p]
= ar

[
ap
(
a−1
)p]

= (arap)
(
a−1
)p

= ar+p
(
a−1
)p

= am
(
a−1
)p

= ama−p

= am · an

Thus we have aman = am+n for each n ∈ Z
(ii) Proof almost identical to the proof of part (i). Try it at home.
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Theorem 15

Suppose G is finite group of order n. For a ∈ G , there exists a positive
integer r ≤ n such that ar = e

Proof: since a0, a1, a2, . . . , an ∈ G and G has n elements, these (n + 1)
elements cannot be distinct, i.e. at least two of them must be equal.
In other words, ai = aj for some i and j with 0 ≤ i < j ≤ n. Hence
e = a0 = ai · a−i = aj · a−i = aj−i by result (i) of Theorem 14. If j − i = r
then 1 ≤ r ≤ n and ar = e
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Finite groups and their tables

Example 32

For G = {e, a, b} consider the following table for operation ∗

∗ e a b

e e a b
a a b e
b b e a

By using above table it is very easy to verify all the properties required for
(G , ∗) to be a group.

We have already checked another example of tables for Z6.
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