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1 Linear Transformation
Definition 1.1 Let U and V are two vector space then a mapping T : U → V is called a Linear
Transformation if it satisfies the following condition:

1. ∀ x, y ∈ U, T (x+ y) = T (x) + T (y)

2. ∀ x ∈ U, α ∈ R, T (αx) = αT (x)

Definition 1.2 Let T : U → V and S : U → V be two Linear Transformation then the sum of T
and S is denoted by T + S and defined as T + S : U → V

(T + S)(x) = T (x) + S(x), ∀ x ∈ U
Example 1 T : R2 → R3, T (x) = (x + y, x− y, 0), S : R2 → R3, S(x) = (x − y, x + y, 2x),
then find (T + S).

Solution:

(T + S)(x) = T (x) + S(x)

= (x+ y, x− y, 0) + (x− y, x+ y, 2x)

= (x+ y + x− y, x− y + x+ y, 0 + 2x)

= (2x, 2x, 2x)

Definition 1.3 Let T : U → V be a Linear Transformation and let α be a scalar then the scalar
multiplication of a linear transformation T by α denoted by αT and defined as αT : U → V

(αT )(x) = αT (x), ∀ x ∈ U
Definition 1.4 The set f all Linear Transformation from U to V is denoted by L(U, V ).

L(U, V ) = {T/T : U → V is a linear transformation}
Definition 1.5 Let T : U → V be a linear transformation and let S : V → W be a linear
transformation then, the composition of S and T is denoted by SoT and defined as SoT : U → W .

SoT (x) = S(T (x)), ∀ x ∈ U
Theorem 1 Prove that the sum of two linear transformation is also linear transformation.

OR

If T, S ∈ L(U, V ) then prove that S + T ∈ L(U, V ).

Proof: Here T, S ∈ L(U, V ) i.e. T : U → V and S : U → V are linear transformation.And we
have to prove S + T : U → V is also linear transformation.
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(i) Let x, y ∈ U to prove that (S + T )(x+ y) = (S + T )(x) + (S + T )(y)

(S + T )(x+ y) = S(x+ y) + T (x+ y) (∵ By Definition(1.2))

= (S(x) + S(y)) + (T (x) + T (y)) (∵ S, T areL.T.)

= S(x) + T (x) + S(y) + T (y)

= (S + T )(x) + (S + T )(y) (∵ By Definition(1.2))

(ii) Let α ∈ R and let x ∈ U to prove that (S + T )(αx) = α(S + T )(x).

(S + T )(αx) = S(αx) + T (αx) (∵ By Definition(1.2))

= αS(x) + αT (x) (∵ S, T areL.T.)

= α(S(x) + T (x))

= α(S + T )(x)

So from (i) and (ii) S + T : U → V is also linear transformation.

Theorem 2 If T ∈ L(U, V ) and α ∈ R then prove that αT ∈ L(U, V ). Proof: Here T : U → V
is a linear transformation and α be a scalar to prove that αT : U → V is linear transformation.

(i) Let x, y ∈ U to prove that (αT )(x+ y) = (αT )(x) + (αT )(y)

(αT )(x+ y) = α(T (x+ y)) (∵ By Definition(1.3))

= α(T (x) + T (y)) (∵ T is L.T.)

= αT (x) + αT (y)

= (αT )(x) + (αT )(y)

(ii) Let x ∈ U and let β be a scalar β ∈ R to prove that (αT )(βx) = β((αT )(x))

(αT )(βx) = α(T (β(x))) (∵ By Definition(1.3))

= α(β(T (x))) (∵ T is L.T.)

= (αβ)T (x)

= (βα)T (x)

= β((αT )(x)) (∵ By Definition(1.3))

From (i) and (ii) αT : U → V is a linear transformation.

Theorem 3 The composition of two linear transformation is also a linear transformation.

OR

If T ∈ L(U, V ) and S ∈ L(V,W ),then prove that SoT ∈ L(V,W ).

Proof: Here T ∈ L(U, V ), so T : U → V is a linear transformation and S ∈ L(V,W ) so
S : V → W is a linear transformation.
And we have to prove that SoT : U → W is also linear transformation.
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(i) Let x, y ∈ U to prove that (SoT )(x+ y) = (SoT )(x) + (SoT )(y).

(SoT )(x+ y) = S(T (x+ y)) (∵ By Definition(1.5))

= S(T (x) + T (y)) (∵ T is L.T.)

= S(T (x)) + S(T (y)) (∵ S is L.T.)

= (SoT )(x) + (SoT )(y) (∵ By Definition(1.5))

(ii) Let x ∈ U and let α be a scalar to prove that (SoT )(αx) = α((SoT )(x)).

(SoT )(αx) = S(T (αx)) (∵ By Definition(1.5))

= S(αT (x))) (∵ T is L.T.)

= α(S(T (x))) (∵ S is L.T.)

= α((SoT )(x)) (∵ By Definition(1.5))

So from (i) and (ii) SoT : U → W is a linear transformation.

Example 2 Let T : R2 → R2, T (x, y) = (x− y, x + y), S : R2 → R2, S(x, y) = (x + y, x− y)
then find SoT and ToS.
Solution: Let (x, y) ∈ R2

(SoT )(x, y) = S(T (x, y))

= S(x− y, x+ y)

= (x− y + x+ y, x− y − x− y)
= (2x,−2y)

(ToS)(x, y) = T (S(x, y))

= T (x+ y, x− y)
= (x+ y − x+ y, x+ y + x− y)
= (2y, 2x)

2 Linear functional and Dual Space
Definition 2.1 Let V be a real vector space then a mapping f : V → R is said be a linear
functional if it satisfies the following conditions:

1. f(x+ y) = f(x) + f(y), ∀ x, y ∈ V

2. f(αx) = αf(x), ∀ x ∈ V and α ∈ R

Note: The set of all linear functional from V to R is denoted by L(V,R) or V ∗.

L(V,R) = V ∗ = {f/f : V → R is a linear functional}

Definition 2.2 Let V ∗ be the set of all linear functional from V to R,where V is a vector space.
for f, g ∈ V ∗ and α ∈ R,

1. (f + g)(x) = f(x) + g(x), ∀ x ∈ V

2. (αf)(x) = α(f(x)) ∀ x ∈ V, α ∈ R

under this operation V ∗ is a vector space and this vector space V ∗ is called a Dual space of a
vector space V.
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Theorem 4 State and Prove Dual Basis existence theorem.
Statement: Let B = {v1, v2, . . . , vn} be a basis for a vector space V .let V ∗ be a dual space of V ,

suppose f1, f2, . . . fn ∈ V ∗ such that

fi(vj) = 1 i = j

= 0 i 6= j i, j = 1, 2, . . . n

Then prove that B∗ = {f1, f2, . . . fn} is a basis for V ∗.
Proof: Here B = {v1, v2, . . . , vn} be a basis for a vector space V and V ∗ be a dual space of V ,

and f1, f2, . . . fn ∈ V ∗ such that

fi(vj) = 1 i = j

= 0 i 6= j i, j = 1, 2, . . . n (1)

we have tp prove B∗ = {f1, f2, . . . fn} is a basis for V ∗.

(i) First we shall prove that B∗ is Linearly Independent

Consider,

α1f1 + α2f2 + . . .+ αnfn = 0 where αi ∈ R, i = 1, 2, . . . , n.

(α1f1 + α2f2 + . . .+ αnfn)(v1) = 0(v1)

(α1f1)(v1) + (α2f2)(v1) + . . .+ (αnfn)(v1) = 0

α1(f1)(v1) + α2(f2)(v1) + . . .+ αn(fn)(v1) = 0 (∵ By Definition(1.3))

α1(1) + α2(0) + . . .+ αn(0) = 0 (By Equation (1))

α1(1) = 0

α1 = 0

Similarly, we can prove α2 = 0, α3 = 0, . . . , αn = 0.
so B∗ = {f1, f2, . . . fn} is Linearly Independent.

(ii) Now we have to prove that [B∗] = V ∗.

we know that [B∗] ⊆ V ∗.
so only to prove V ∗ ⊆ [B∗]
take f ∈ V ∗, so f : V → R is a linear functional.
Suppose,

f(v1) = α1

f(v2) = α2

...
f(vn) = αn, where αi ∈ R, i = 1, 2, . . . , n.

Let us define a function φ : V → R such that

φ = α1f1 + α2f2 + . . .+ αnfn (2)
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Now,

φ(v1) = (α1f1 + α2f2 + . . .+ αnfn)(v1)

= (α1f1)(v1) + (α2f2)(v1) + . . .+ (αnfn)(v1)

= α1(f1)(v1) + α2(f2)(v1) + . . .+ αn(fn)(v1) (∵ By Definition(1.3))

= α1(1) + α2(0) + . . .+ αn(0) (By Equation (1))

φ(v1) = α1

Similarly, we can prove

φ(v2) = α2

φ(v3) = α3

...
φ(vn) = αn

So, φ(vi) = αi, where i = 1, 2, . . . n

also here

f(vi) = αi

φ(vi) = f(vi)

φ = f

so by equation (2)

f = α1f1 + α2f2 + . . .+ αnfn

f ∈ [B∗]

V ∗ ⊆ [B∗]

so,
[B∗] = V ∗

so from (i) and (ii) B∗ = {f1, f2, . . . fn} is a basis for V ∗.

Definition 2.3 Let V be a vector space and V ∗ be a dual space of a vector space V .Let dimV = n
then dimV ∗ = n and basisB∗ = {f1, f2, . . . fn} of V ∗ corresponding to a basisB = {v1, v2, . . . , vn}
of a vector space V is called a dual basis for a vector space V .

Example 3 Find the dual basis corresponding to a basis {(2, 1), (3, 1)} of R2.
Solution: Here R2 is a vector space

∴ dimR2 = 2
Let (R2)∗ be a dual space of R2.
∴ dim(R2)∗ = 2
Also here B = {(2, 1), (3, 1)} is a basis for R2.
let v1 = (2, 1) and v2 = (3, 1)
to find B∗ = {f1, f2} a dual basis for R2.
Define function f1 : R2 → R such that

f1(x, y) = ax+ by, a, b ∈ R
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f1(x, y) = ax+ by

f1(v1) = ax+ by

f1(2, 1) = 2a+ b

1 = 2a+ b

2a+ b = 1 (3)

f1(x, y) = ax+ by

f1(v2) = ax+ by

f1(3, 1) = 3a+ b

0 = 3a+ b

3a+ b = 0 (4)

Solve equation (3) and (4) we get a = −1.
Substitute a = −1 in equation (3) we get b = 3.
So,we get

f1(x, y) = −x+ 3y

Now, we define function f2 : R2 → R such that

f2(x, y) = cx+ dy, c, d ∈ R

f2(x, y) = cx+ dy

f2(v1) = cx+ dy

f2(2, 1) = 2c+ d

0 = 2c+ d

2c+ d = 0 (5)

f2(x, y) = cx+ dy

f2(v2) = cx+ dy

f2(3, 1) = 3c+ d

1 = 3c+ d

3c+ d = 1 (6)

Solve equation (5) and (6) we get c = 1.
Substitute c = 1 in equation (5) we get d = −2.
So,we get

f2(x, y) = x− 2y

Thus B∗ = {f1, f2} is a dual basis for R2 .
where,

f1(x, y) = −x+ 3y

f2(x, y) = x− 2y
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Example 4 Find the dual basis corresponding to a basis {(1, 0, 1), (1, 1, 0), (0, 1, 1)} of R3.
Solution: Here R3 is a vector space

∴ dimR3 = 3
Let (R3)∗ be a dual space of R3.
∴ dim(R3)∗ = 3
Also here B = {(1, 0, 1), (1, 1, 0), (0, 1, 1)} is a basis for R3.
let v1 = (1, 0, 1) , v2 = (1, 1, 0) and v3 = (0, 1, 1)
to find B∗ = {f1, f2, f3} a dual basis for R3

Let v1 = (1, 0, 1), v2 = (1, 1, 0) and v3 = (0, 1, 1)
to find B∗ = {f1, f2, f3} a dual basis for R3.
Define function f1 : R3 → R such that

f1(x, y, z) = ax+ by + cz, a, b, c ∈ R

f1(x, y, z) = ax+ by + cz

f1(v1) = ax+ by + cz

f1(1, 0, 1) = a+ c

1 = a+ c

a+ c = 1 (7)

f1(x, y, z) = ax+ by + cz

f1(v2) = ax+ by + cz

f1(1, 1, 0) = a+ b

0 = a+ b

a+ b = 0

a = −b (8)

f1(x, y, z) = ax+ by + cz

f1(v3) = ax+ by + cz

f1(0, 1, 1) = b+ c

0 = b+ c

b+ c = 0 (9)

from equation (8) a = −b in equation (7) we get

b− c = −1 (10)

solve equation (9) and (10) we get b =
−1
2

.

Substitute b =
−1
2

in equation (8) we get a =
1

2
.

from equation (9) we get c =
1

2
.

Thus we get,

f1(x, y, z) =
1

2
x− 1

2
y +

1

2
z

f1(x, y, z) =
1

2
(x− y + z)
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Similarly we define function f2 : R3 → R such that

f2(x, y, z) = ax+ by + cz, a, b, c ∈ R

f2(x, y, z) = ax+ by + cz

f2(v1) = ax+ by + cz

f2(1, 0, 1) = a+ c

0 = a+ c

a+ c = 0

a = −c (11)

f2(x, y, z) = ax+ by + cz

f2(v2) = ax+ by + cz

f2(1, 1, 0) = a+ b

1 = a+ b

a+ b = 1 (12)

f2(x, y, z) = ax+ by + cz

f2(v3) = ax+ by + cz

f2(0, 1, 1) = b+ c

0 = b+ c

b+ c = 0 (13)

from equation (11) a = −c in equation (12) we get

b− c = 1 (14)

solve equation (13) and (14) we get b =
1

2
.

Substitute b =
1

2
in equation (14) we get c =

−1
2

.

from equation (11) we get a =
1

2
.

Thus we get,

f2(x, y, z) =
1

2
x+

1

2
y − 1

2
z

f2(x, y, z) =
1

2
(x+ y − z)

Now we define function f3 : R3 → R such that

f3(x, y, z) = ax+ by + cz, a, b, c ∈ R

f3(x, y, z) = ax+ by + cz

f3(v1) = ax+ by + cz

f3(1, 0, 1) = a+ c

0 = a+ c

a+ c = 0

a = −c (15)

8



f3(x, y, z) = ax+ by + cz

f3(v2) = ax+ by + cz

f3(1, 1, 0) = a+ b

0 = a+ b

a+ b = 0 (16)

f3(x, y, z) = ax+ by + cz

f3(v3) = ax+ by + cz

f3(0, 1, 1) = b+ c

1 = b+ c

b+ c = 1 (17)

from equation (15) a = −c in equation (16) we get

b− c = 0 (18)

solve equation (17) and (18) we get b =
1

2
.

Substitute b =
1

2
in equation (17) we get c =

1

2
.

from equation (15) we get a =
−1
2

.
Thus we get,

f3(x, y, z) =
−1
2
x+

1

2
y +

1

2
z

f3(x, y, z) =
1

2
(−x+ y + z)

Thus B∗ = {f1, f2, f3} is a dual basis for R3 .
where,

f1(x, y, z) =
1

2
(x− y + z)

f2(x, y, z) =
1

2
(x+ y − z)

f3(x, y, z) =
1

2
(−x+ y + z)

Theorem 5 Let {v1, v2, . . . , vn} be a basis for V and {f1, f2, . . . , fn} be a basis for V ∗ then
prove that for any v ∈ V

v = f1(v)v1 + f2(v)v2 + . . .+ fn(v)vn

and for any f ∈ V ∗

f = f(v1)f1 + f(v2)f2 + . . .+ f(vn)fn

Proof: Here B = {v1, v2, . . . , vn} is a basis of a vector basis for V and B∗ = {f1, f2, . . . , fn}
be a basis for V ∗

∴ B is linearly independent and [B] = V and
B∗ is linearly independent and [B∗] = V ∗
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(i) Let

v ∈ V
v ∈ V = [B]

v ∈ [B]

v = α1v1 + α2v2 + . . .+ αnvv, ∀ αi ∈ R, i = 1, 2, . . . n (19)

f1(v) = f1(α1v1 + α2v2 + . . .+ αnvv)

= f1(α1v1) + f1(α2v2) + . . .+ f1(αnvn)

= α1(f1(v1)) + α2(f1(v2)) + . . .+ αn(f1(vn))

= α1(1) + α2(0) + . . .+ αn(0)

f1(v) = α1

Similarly we can prove that,

f2(v) = α2

f3(v) = α3

...
f1n(v) = αn

Substitute this values in equation (19) we get,

v = f1(v)v1 + f2(v)v2 + . . .+ fn(v)vn

(ii) Let

f ∈ V ∗

f ∈ V ∗ = [B∗]

f ∈ [B∗]

f = α1f1 + α2f2 . . .+ αnfn, ∀ αi ∈ R, i = 1, 2, . . . n (20)

f(v1) = (α1f1 + α2f2 . . .+ αnfn)(v1)

= (α1f1)(v1) + (α2f2)(v1) + . . .+ (αnfn)(v1)

= α1(f1(v1)) + α2(f2(v1)) + . . .+ αn(fn(v1))

= α1(1) + α2(0) + . . .+ αn(0)

f(v1) = α1

Similarly we can prove that,

f(v2) = α2

f(v3) = α3

...
f(vn) = αn

Substitute this values in equation (20) we get,

f = f(v1)f1 + f(v2)f2 + . . .+ f(vn)fn
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3 Operator Equations
Definition 3.1 Let T : U → V be a linear map and the solution of the equation

T (u0) = v0 where v0 is a fixed vector in V, (21)

then the equation (21) is called an Operator Equation.

Definition 3.2 If v0 = 0V , then the set of solution of the equation

T (u) = 0V (22)

Then equation (22) is called homogeneous (H) equation and solution of this equation is called
kernel of T .

Definition 3.3 If v0 6= 0V then equation (21) is called non-homogeneous (NH) equation.

Theorem 6 Let T : U → V be a linear map.Given v0 6= 0V in V , the non-homogeneous equation

(NH) T (u) = v0

and the associated homogeneous equation

(H) T (u) = 0V

have the following properties:
(a) If v0 ∈ R(T ) and (H) has the trivial solution, namely u = 0U as its only solution, then (NH)

has a unique solution.
(b) If v0 ∈ R(T ) and (H) has a nontrivial solution, namely a solution u 6= 0U , then (NH) has an

infinite number of solutions.In this case if u0 is a solution of (NH) is the linear variety u0 +K,
where K = N(T ) is the set of all solutions of (H).

Proof: (a) If v0 ∈ R(T ), then T (u) = v0 has a solution.
If T (u) = 0V has only one solution u = 0U .
Then N(T ) = {0U}
so, T is one-one.
This means T (u) = v0 cannot more than one solution.
i.e. the solution of (NH) is unique.

(b) If T (u) = 0V has a nonzero solution, then N(T ) 6= {0U}.
Let u0 ∈ U be a solution of (NH). It exists because v0 ∈ R(T ) .
Then T (u0) = v0.
Now if uk ∈ N(T ), then

T (u0 + uk) = T (u0) + T (uk) (∵ T is linear)

= v0 + 0V

= v0

Therefore, u0 + uk is a solution of (NH).
This is true for every uk ∈ N(T ), and N(T ) has infinite number of elements.
So, (NH) has infinite number of solutions.
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From above discussion it is obvious that u0 +K, where K = N(T ), is contained in the
solution set of (NH).
Conversely, if w be any other solution of (NH), then

T (w) = v0 = T (u0)

then

T (w)− T (u0) = 0V

T (w − uo) = 0V

w − u0 ∈ N(T ) = K

w ∈ u0 +K

Thus, the solution set of (NH) is precisely u0 +K.

Example 5 Let T : R5 → R3 be a linear map defined by

T (e1) =
1

2
f1, T (e2) =

1

2
f1, T (e3) = f2, T (e4) = f2, T (e5) = 0.

where {e1, e2, e3, e4, e5} is the standard basis for R5 and {f1, f2, f3} is the standard
basis for R3.Then solve the equation

T (u) = (1, 1, 0)

Solution: First we calculate the value of T (x1, x2, x3, x4, x5) :

T (x1, x2, x3, x4, x5) = x1T (e1) + x2T (e2) + x3T (e3) + x4T (e4) + x5T (e5)

= x1
1

2
f1 + x2

1

2
f1 + x3f2 + x4f2 + x50

=
x1
2
(1, 0, 0) +

x2
2
(1, 0, 0) + x3(0, 1, 0) + x4(0, 1, 0) + x5(0, 0, 0)

= (
x1 + x2

2
, x3 + x4, 0)

The associated homogeneous equation is:

T (x1, x2, x3, x4, x5) = 0

(
x1 + x2

2
, x3 + x4, 0) = (0, 0, 0)

x1 + x2
2

= 0, x3 + x4 = 0

we get, x2 = −x1, x3 = −x4

Thus, the kernel of T is the set of all vectors of the form (x1,−x1, x3,−x3, x5)

i.e. x1(1,−1, 0,−, 0) + x3(0, 0, 1,−1, 0) + x5(0, 0, 0, 0, 1). Hence

N(T ) = [(1,−1, 0, 0, 0), (0, 0, 1,−1, 0), (0, 0, 0, 0, 1)]
One particular solution of T (u) = (1, 1, 0) is u0 = (2, 0, 1, 0, 0), which is obtained by
putting x1 = 2, x2 = 0, x3 = 1, x4 = 0, x5 = 0.
So the complete solution of the equation

T (u) = (1, 1, 0)

is the linear variety (2,0,1,0,0) + N(T), i.e. the set

(2, 0, 1, 0, 0) + {(a,−a, b,−b, c)/a, b, c are real numbers }
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4 Annihilators:
Definition 4.1 Let V be a real vector space and S be a non-empty subset of a vector space V , then
the set {f ∈ V ∗/f(x) = 0, ∀ x ∈ S} is called an annihilators of a set S and it is denoted by S0.

S0 = {f ∈ V ∗/f(x) = 0, ∀ x ∈ S}

Theorem 7 Let S be a non-empty subset of a vector space V , then prove that S0 is a subspace
of V ∗.

Proof: Here S is a non-empty subset of a vector space V .
let V be a real vector space and V ∗ be a dual space of a vector space V .

S0 = {f ∈ V ∗/f(x) = 0, ∀ x ∈ S}

0(x) = 0, ∀ x ∈ S

0 ∈ S0

S0 6= φ

(i) Let f1, f2 ∈ S0,we have to prove that f1 + f2 ∈ S0

Here f1, f2 ∈ S0

So f1(x) = 0, f2(x) = 0, ∀ x ∈ S

(f1 + f2)(x) = f1(x) + f2(x)

= 0 + 0

= 0

f1 + f2 ∈ S0

(ii) Let α be a scalar and let f ∈ S0 then to prove that αf ∈ S0.
Here f ∈ S0 so f(x) = 0, ∀ x ∈ S

((αf)(x) = αf(x)

= α0

= 0

αf ∈ S0

So from (i) and (ii) S0 is a subspace of dual space of V ∗.

Note: If S = 0 then S0 = V ∗.

5 Bilinear form
Definition 5.1 Let V be a real vector space, a bilinear form f : V × V → R is a function of two
variables such that,
∀ x, y, z ∈ V and α, β ∈ R

1. f(αx+ βy, z) = αf(x, z) + βf(y, z)

2. f(x, αy + βz) = αf(x, y) + βf(x, z)
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Example 6 If x = (x1, x2), y = (y1, y2) ∈ R2 and f(x, y) = x1y2 − x2y1 then prove that f is a
bilinear form.

Solution: Here R2 is a vector space.
Here x = (x1, x2), y = (y1, y2) ∈ R2 and function f : R2 × R2 → R defined by

f(x, y) = x1y2 − x2y1

we have to prove f is a bilinear form.

(i) Take x = (x1, x2), y = (y1, y2), z = (z1, z2) ∈ R2 and α, β ∈ R
we have to prove f(αx+ βy, z) = αf(x, z) + βf(y, z)

f(αx+ βy, z) = f(α(x1, x2) + β(y1, y2), (z1, z2))

= f((αx1 + βy1, αx2 + βy2), (z1, z2))

= (αx1 + βy1)z2 − (αx2 + βy2)z1

= αx1z2 + βy1z2 − αx2z1 − βy2z1
= α(x1z2 − x2z1) + β(y1z2 − y2z1)
= αf(x, z) + βf(y, z)

(ii) Take x = (x1, x2), y = (y1, y2), z = (z1, z2) ∈ R2 and α, β ∈ R
we have to prove f(x, αy + βz) = αf(x, y) + βf(x, z)

f(x, αy + βz) = f((x1, x2), α(y1, y2) + β(z1, z2))

= f((x1, x2), (αy1 + βz1, αy2 + βz2))

= x1(αy2 + βz2)− x2(αy1 + βz1)

= αx1y2 + βx1z2 − αx2y1 − βx2z1
= α(x1y2 − x2y1) + β(x1z2 − x2z1)
= αf(x, y) + βf(x, z)

From (i) and (ii) f is a bilinear form.

6 Exercises:
1. Find the dual basis corresponding to a basis B = {(1,−1, 1), (1, 1,−1), (−1, 1, 1)} of R3.

2. Find the dual basis corresponding to a basis B = {(1,−2, 1), (−2, 0, 1), (0, 0, 1)} of R3

3. T : R3 → R2 defined by T (x1.x2, x3) = (x1+x2, x1−x3), then solve the operator equation
T (x1.x2, x3) = (6, 3).

4. If x = (x1, x2, x3) ∈ R3, y = (y1, y2, y3) ∈ R3 and f(x, y) = x1y2 − 3x2y3 + x3y1, then
prove that f is bilinear form.

5. If x = (x1, x2), y = (y1, y2) ∈ R2 and f(x, y) = (x1 − y1)2 + x2y2. Is f is bilinear form on
R2.
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