SHRI GOVIND GURU UNIVERSITY
 B.Sc.Sem-5 Material
 BSC0C506C:Mathematics(Theory)
 Linear Algebra-II

 Unit-I

 Unit-I}

Unit-I: Composition of Linear Maps, The Space $L(U, V)$, The Operator Equation,Linear Functional,Dual Space,Dual of Dual,Dual Basis Existence Theorem,Annihilators, bilinear forms.

1 Linear Transformation

Definition 1.1 Let U and V are two vector space then a mapping $T: U \rightarrow V$ is called a Linear Transformation if it satisfies the following condition:

1. $\forall \bar{x}, \bar{y} \in U, T(\bar{x}+\bar{y})=T(\bar{x})+T(\bar{y})$
2. $\forall \bar{x} \in U, \alpha \in \mathbb{R}, T(\alpha \bar{x})=\alpha T(\bar{x})$

Definition 1.2 Let $T: U \rightarrow V$ and $S: U \rightarrow V$ be two Linear Transformation then the sum of T and S is denoted by $T+S$ and defined as $T+S: U \rightarrow V$

$$
(T+S)(\bar{x})=T(\bar{x})+S(\bar{x}), \forall \bar{x} \in U
$$

Example $1 T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}, T(\bar{x})=(x+y, x-y, 0), S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}, S(\bar{x})=(x-y, x+y, 2 x)$, then find $(T+S)$.

Solution:

$$
\begin{aligned}
(T+S)(\bar{x}) & =T(\bar{x})+S(\bar{x}) \\
& =(x+y, x-y, 0)+(x-y, x+y, 2 x) \\
& =(x+y+x-y, x-y+x+y, 0+2 x) \\
& =(2 x, 2 x, 2 x)
\end{aligned}
$$

Definition 1.3 Let $T: U \rightarrow V$ be a Linear Transformation and let α be a scalar then the scalar multiplication of a linear transformation T by α denoted by αT and defined as $\alpha T: U \rightarrow V$

$$
(\alpha T)(\bar{x})=\alpha T(\bar{x}), \quad \forall \bar{x} \in U
$$

Definition 1.4 The set fall Linear Transformation from U to V is denoted by $L(U, V)$.

$$
L(U, V)=\{T / T: U \rightarrow V \text { is a linear transformation }\}
$$

Definition 1.5 Let $T: U \rightarrow V$ be a linear transformation and let $S: V \rightarrow W$ be a linear transformation then, the composition of S and T is denoted by $S o T$ and defined as $S o T: U \rightarrow W$.

$$
\operatorname{SoT}(\bar{x})=S(T(\bar{x})), \quad \forall \bar{x} \in U
$$

Theorem 1 Prove that the sum of two linear transformation is also linear transformation.

OR

If $T, S \in L(U, V)$ then prove that $S+T \in L(U, V)$.
Proof: Here $T, S \in L(U, V)$ i.e. $T: U \rightarrow V$ and $S: U \rightarrow V$ are linear transformation.And we have to prove $S+T: U \rightarrow V$ is also linear transformation.
(i) Let $\bar{x}, \bar{y} \in U$ to prove that $(S+T)(\bar{x}+\bar{y})=(S+T)(\bar{x})+(S+T)(\bar{y})$

$$
\begin{array}{rlrl}
(S+T)(\bar{x}+\bar{y}) & =S(\bar{x}+\bar{y})+T(\bar{x}+\bar{y}) & & (\because \text { By Definition }(1.2)) \\
& =(S(\bar{x})+S(\bar{y}))+(T(\bar{x})+T(\bar{y})) & (\because S, T \text { areL.T. }) \\
& =S(\bar{x})+T(\bar{x})+S(\bar{y})+T(\bar{y}) & & \\
& =(S+T)(\bar{x})+(S+T)(\bar{y}) & & (\because \text { By Definition }(1.2))
\end{array}
$$

(ii) Let $\alpha \in \mathbb{R}$ and let $x \in U$ to prove that $(S+T)(\alpha \bar{x})=\alpha(S+T)(\bar{x})$.

$$
\begin{aligned}
(S+T)(\alpha \bar{x}) & =S(\alpha \bar{x})+T(\alpha \bar{x}) & & (\because \text { By Definition }(1.2)) \\
& =\alpha S(\bar{x})+\alpha T(\bar{x}) & & (\because S, T \text { areL.T. }) \\
& =\alpha(S(\bar{x})+T(\bar{x})) & & \\
& =\alpha(S+T)(\bar{x}) & &
\end{aligned}
$$

So from (i) and (ii) $S+T: U \rightarrow V$ is also linear transformation.

Theorem 2 If $T \in L(U, V)$ and $\alpha \in \mathbb{R}$ then prove that $\alpha T \in L(U, V)$. Proof: Here $T: U \rightarrow V$ is a linear transformation and α be a scalar to prove that $\alpha T: U \rightarrow V$ is linear transformation.
(i) Let $x, y \in U$ to prove that $(\alpha T)(\bar{x}+\bar{y})=(\alpha T)(\bar{x})+(\alpha T)(\bar{y})$

$$
\begin{aligned}
(\alpha T)(\bar{x}+\bar{y}) & =\alpha(T(\bar{x}+\bar{y})) & & (\because \text { By Definition }(1.3)) \\
& =\alpha(T(\bar{x})+T(\bar{y})) & & (\because T \text { is L.T. }) \\
& =\alpha T(\bar{x})+\alpha T(\bar{y}) & & \\
& =(\alpha T)(\bar{x})+(\alpha T)(\bar{y}) & &
\end{aligned}
$$

(ii) Let $x \in U$ and let β be a scalar $\beta \in \mathbb{R}$ to prove that $(\alpha T)(\beta \bar{x})=\beta((\alpha T)(\bar{x}))$

$$
\begin{align*}
(\alpha T)(\beta \bar{x}) & =\alpha(T(\beta(\bar{x}))) & & (\because \text { By Definition }(1.3)) \\
& =\alpha(\beta(T(\bar{x}))) & & (\because T \text { is L.T. }) \\
& =(\alpha \beta) T(\bar{x}) & & \\
& =(\beta \alpha) T(\bar{x}) & & (\because \text { By Definition }(1.3
\end{align*}
$$

From (i) and (ii) $\alpha T: U \rightarrow V$ is a linear transformation.

Theorem 3 The composition of two linear transformation is also a linear transformation.

OR
If $T \in L(U, V)$ and $S \in L(V, W)$,then prove that $S o T \in L(V, W)$.
Proof: Here $T \in L(U, V)$, so $T: U \rightarrow V$ is a linear transformation and $S \in L(V, W)$ so $S: V \rightarrow W$ is a linear transformation.
And we have to prove that $S o T: U \rightarrow W$ is also linear transformation.
(i) Let $\bar{x}, \bar{y} \in U$ to prove that $(S o T)(\bar{x}+\bar{y})=(S o T)(\bar{x})+(S o T)(\bar{y})$.

$$
\begin{aligned}
(S o T)(\bar{x}+\bar{y}) & =S(T(\bar{x}+\bar{y})) & & (\because \text { By Definition }(1.5)) \\
& =S(T(\bar{x})+T(\bar{y})) & & (\because T \text { is L.T. }) \\
& =S(T(\bar{x}))+S(T(\bar{y})) & & (\because S \text { is L.T. }) \\
& =(S o T)(\bar{x})+(S o T)(\bar{y}) & & (\because \text { By Definition }(1.5))
\end{aligned}
$$

(ii) Let $\bar{x} \in U$ and let α be a scalar to prove that $(S o T)(\alpha \bar{x})=\alpha((S o T)(\bar{x}))$.

$$
\begin{aligned}
(S o T)(\alpha \bar{x}) & =S(T(\alpha \bar{x})) & & (\because \text { By Definition }(1.5)) \\
& =S(\alpha T(\bar{x}))) & & (\because T \text { is L.T. }) \\
& =\alpha(S(T(\bar{x})) & & (\because S \text { is L.T. }) \\
& =\alpha((S o T)(\bar{x})) & & (\because \text { By Definition }(1.5))
\end{aligned}
$$

So from (i) and (ii) SoT:U $\rightarrow W$ is a linear transformation.
Example 2 Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, T(x, y)=(x-y, x+y), S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, S(x, y)=(x+y, x-y)$ then find SoT and ToS.
Solution: \quad Let $(x, y) \in \mathbb{R}^{2}$

$$
\begin{aligned}
(S o T)(x, y) & =S(T(x, y)) \\
& =S(x-y, x+y) \\
& =(x-y+x+y, x-y-x-y) \\
& =(2 x,-2 y) \\
(T o S)(x, y) & =T(S(x, y)) \\
& =T(x+y, x-y) \\
& =(x+y-x+y, x+y+x-y) \\
& =(2 y, 2 x)
\end{aligned}
$$

2 Linear functional and Dual Space

Definition 2.1 Let V be a real vector space then a mapping $f: V \rightarrow \mathbb{R}$ is said be a linear functional if it satisfies the following conditions:

1. $f(x+y)=f(x)+f(y), \quad \forall x, y \in V$
2. $f(\alpha x)=\alpha f(x), \quad \forall x \in V$ and $\alpha \in \mathbb{R}$

Note: The set of all linear functional from V to \mathbb{R} is denoted by $L(V, \mathbb{R})$ or V^{*}.

$$
L(V, \mathbb{R})=V^{*}=\{f / f: V \rightarrow \mathbb{R} \text { is a linear functional }\}
$$

Definition 2.2 Let V^{*} be the set of all linear functional from V to \mathbb{R}, where V is a vector space. for $f, g \in V^{*}$ and $\alpha \in \mathbb{R}$,

1. $(f+g)(x)=f(x)+g(x), \quad \forall x \in V$
2. $(\alpha f)(x)=\alpha(f(x)) \quad \forall x \in V, \alpha \in \mathbb{R}$
under this operation V^{*} is a vector space and this vector space V^{*} is called a Dual space of a vector space V.

Theorem 4 State and Prove Dual Basis existence theorem.
Statement: Let $B=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be a basis for a vector space V.let V^{*} be a dual space of V, suppose $f_{1}, f_{2}, \ldots f_{n} \in V^{*}$ such that

$$
\begin{array}{rlrl}
f_{i}\left(v_{j}\right) & =1 & & i=j \\
& =0
\end{array} \quad \begin{aligned}
& i \neq j
\end{aligned} \quad i, j=1,2, \ldots n
$$

Then prove that $B^{*}=\left\{f_{1}, f_{2}, \ldots f_{n}\right\}$ is a basis for V^{*}.
Proof: Here $B=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be a basis for a vector space V and V^{*} be a dual space of V, and $f_{1}, f_{2}, \ldots f_{n} \in V^{*}$ such that

$$
\begin{align*}
f_{i}\left(v_{j}\right) & =1 & & i=j \\
& =0 & & i \neq j \tag{1}
\end{align*} \quad i, j=1,2, \ldots n
$$

we have tp prove $B^{*}=\left\{f_{1}, f_{2}, \ldots f_{n}\right\}$ is a basis for V^{*}.
(i) First we shall prove that B^{*} is Linearly Independent

Consider,

$$
\begin{align*}
\alpha_{1} f_{1}+\alpha_{2} f_{2}+\ldots+\alpha_{n} f_{n} & =\overline{0} \quad \text { where } \quad \alpha_{i} \in \mathbb{R}, \quad i=1,2, \ldots, n . \\
\left(\alpha_{1} f_{1}+\alpha_{2} f_{2}+\ldots+\alpha_{n} f_{n}\right)\left(v_{1}\right) & =\overline{0}\left(v_{1}\right) \\
\left(\alpha_{1} f_{1}\right)\left(v_{1}\right)+\left(\alpha_{2} f_{2}\right)\left(v_{1}\right)+\ldots+\left(\alpha_{n} f_{n}\right)\left(v_{1}\right) & =0 \\
\alpha_{1}\left(f_{1}\right)\left(v_{1}\right)+\alpha_{2}\left(f_{2}\right)\left(v_{1}\right)+\ldots+\alpha_{n}\left(f_{n}\right)\left(v_{1}\right) & =0 \quad(\because \text { By Definition }(1.3)) \\
\alpha_{1}(1)+\alpha_{2}(0)+\ldots+\alpha_{n}(0) & =0 \tag{1}\\
\alpha_{1}(1) & =0 \\
\alpha_{1} & =0
\end{align*}
$$

Similarly, we can prove $\alpha_{2}=0, \alpha_{3}=0, \ldots, \alpha_{n}=0$. so $B^{*}=\left\{f_{1}, f_{2}, \ldots f_{n}\right\}$ is Linearly Independent.
(ii) Now we have to prove that $\left[B^{*}\right]=V^{*}$.
we know that $\left[B^{*}\right] \subseteq V^{*}$.
so only to prove $V^{*} \subseteq\left[B^{*}\right]$
take $f \in V^{*}$, so $f: V \rightarrow \mathbb{R}$ is a linear functional.
Suppose,

$$
\begin{aligned}
f\left(v_{1}\right) & =\alpha_{1} \\
f\left(v_{2}\right) & =\alpha_{2} \\
& \vdots \\
f\left(v_{n}\right) & =\alpha_{n}, \quad \text { where } \alpha_{i} \in \mathbb{R}, \quad i=1,2, \ldots, n .
\end{aligned}
$$

Let us define a function $\phi: V \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
\phi=\alpha_{1} f_{1}+\alpha_{2} f_{2}+\ldots+\alpha_{n} f_{n} \tag{2}
\end{equation*}
$$

Now,

$$
\begin{aligned}
\phi\left(v_{1}\right) & =\left(\alpha_{1} f_{1}+\alpha_{2} f_{2}+\ldots+\alpha_{n} f_{n}\right)\left(v_{1}\right) & & \\
& =\left(\alpha_{1} f_{1}\right)\left(v_{1}\right)+\left(\alpha_{2} f_{2}\right)\left(v_{1}\right)+\ldots+\left(\alpha_{n} f_{n}\right)\left(v_{1}\right) & & \\
& =\alpha_{1}\left(f_{1}\right)\left(v_{1}\right)+\alpha_{2}\left(f_{2}\right)\left(v_{1}\right)+\ldots+\alpha_{n}\left(f_{n}\right)\left(v_{1}\right) & & (\because \text { By Definition }(1.3)) \\
& =\alpha_{1}(1)+\alpha_{2}(0)+\ldots+\alpha_{n}(0) & & (\text { By Equation }(1)) \\
\phi\left(v_{1}\right) & =\alpha_{1} & &
\end{aligned}
$$

Similarly, we can prove

$$
\begin{aligned}
\phi\left(v_{2}\right) & =\alpha_{2} \\
\phi\left(v_{3}\right) & =\alpha_{3} \\
\vdots & \\
\phi\left(v_{n}\right) & =\alpha_{n} \\
\text { So }, \quad \phi\left(v_{i}\right) & =\alpha_{i}, \quad \text { where } i=1,2, \ldots n
\end{aligned}
$$

also here

$$
\begin{aligned}
f\left(v_{i}\right) & =\alpha_{i} \\
\phi\left(v_{i}\right) & =f\left(v_{i}\right) \\
\phi & =f
\end{aligned}
$$

so by equation (2)

$$
\begin{aligned}
f & =\alpha_{1} f_{1}+\alpha_{2} f_{2}+\ldots+\alpha_{n} f_{n} \\
f & \in\left[B^{*}\right] \\
V^{*} & \subseteq\left[B^{*}\right]
\end{aligned}
$$

so,

$$
\left[B^{*}\right]=V^{*}
$$

so from (i) and (ii) $B^{*}=\left\{f_{1}, f_{2}, \ldots f_{n}\right\}$ is a basis for V^{*}.

Definition 2.3 Let V be a vector space and V^{*} be a dual space of a vector space V.Let $\operatorname{dim} V=n$ then $\operatorname{dim} V^{*}=n$ and basis $B^{*}=\left\{f_{1}, f_{2}, \ldots f_{n}\right\}$ of V^{*} corresponding to a basis $B=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ of a vector space V is called a dual basis for a vector space V.

Example 3 Find the dual basis corresponding to a basis $\{(2,1),(3,1)\}$ of \mathbb{R}^{2}.
Solution: Here \mathbb{R}^{2} is a vector space
$\therefore \operatorname{dim} \mathbb{R}^{2}=2$
Let $\left(\mathbb{R}^{2}\right)^{*}$ be a dual space of \mathbb{R}^{2}.
$\therefore \operatorname{dim}\left(\mathbb{R}^{2}\right)^{*}=2$
Also here $B=\{(2,1),(3,1)\}$ is a basis for \mathbb{R}^{2}.
let $v_{1}=(2,1)$ and $v_{2}=(3,1)$
to find $B^{*}=\left\{f_{1}, f_{2}\right\}$ a dual basis for \mathbb{R}^{2}.
Define function $f_{1}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that

$$
f_{1}(x, y)=a x+b y, \quad a, b \in \mathbb{R}
$$

$$
\begin{align*}
f_{1}(x, y) & =a x+b y \\
f_{1}\left(v_{1}\right) & =a x+b y \\
f_{1}(2,1) & =2 a+b \\
1 & =2 a+b \\
2 a+b & =1 \tag{3}
\end{align*}
$$

$$
\begin{align*}
f_{1}(x, y) & =a x+b y \\
f_{1}\left(v_{2}\right) & =a x+b y \\
f_{1}(3,1) & =3 a+b \\
0 & =3 a+b \\
3 a+b & =0 \tag{4}
\end{align*}
$$

Solve equation (3) and (4) we get $a=-1$.
Substitute $a=-1$ in equation (3) we get $b=3$.
So, we get

$$
f_{1}(x, y)=-x+3 y
$$

Now, we define function $f_{2}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that

$$
\begin{align*}
f_{2}(x, y)=c x & +d y, \quad c, d \in \mathbb{R} \\
f_{2}(x, y) & =c x+d y \\
f_{2}\left(v_{1}\right) & =c x+d y \\
f_{2}(2,1) & =2 c+d \\
0 & =2 c+d \\
2 c+d & =0 \tag{5}\\
f_{2}(x, y) & =c x+d y \\
f_{2}\left(v_{2}\right) & =c x+d y \\
f_{2}(3,1) & =3 c+d \\
1 & =3 c+d \\
3 c+d & =1 \tag{6}
\end{align*}
$$

Solve equation (5) and (6) we get $c=1$.
Substitute $c=1$ in equation (5) we get $d=-2$.
So, we get

$$
f_{2}(x, y)=x-2 y
$$

Thus $B^{*}=\left\{f_{1}, f_{2}\right\}$ is a dual basis for \mathbb{R}^{2}. where,

$$
\begin{gathered}
f_{1}(x, y)=-x+3 y \\
f_{2}(x, y)=x-2 y
\end{gathered}
$$

Example 4 Find the dual basis corresponding to a basis $\{(1,0,1),(1,1,0),(0,1,1)\}$ of \mathbb{R}^{3}.
Solution: Here \mathbb{R}^{3} is a vector space
$\therefore \operatorname{dim} \mathbb{R}^{3}=3$
Let $\left(\mathbb{R}^{3}\right)^{*}$ be a dual space of \mathbb{R}^{3}.
$\therefore \operatorname{dim}\left(\mathbb{R}^{3}\right)^{*}=3$
Also here $B=\{(1,0,1),(1,1,0),(0,1,1)\}$ is a basis for \mathbb{R}^{3}.
let $v_{1}=(1,0,1), v_{2}=(1,1,0)$ and $v_{3}=(0,1,1)$
to find $B^{*}=\left\{f_{1}, f_{2}, f_{3}\right\}$ a dual basis for \mathbb{R}^{3}
Let $v_{1}=(1,0,1), v_{2}=(1,1,0)$ and $v_{3}=(0,1,1)$
to find $B^{*}=\left\{f_{1}, f_{2}, f_{3}\right\}$ a dual basis for \mathbb{R}^{3}.
Define function $f_{1}: \mathbb{R}^{3} \rightarrow \mathbb{R}$ such that

$$
\begin{align*}
f_{1}(x, y, z)=a x & +b y+c z, \quad a, b, c \in \mathbb{R} \\
f_{1}(x, y, z) & =a x+b y+c z \\
f_{1}\left(v_{1}\right) & =a x+b y+c z \\
f_{1}(1,0,1) & =a+c \\
1 & =a+c \\
a+c & =1 \tag{7}\\
f_{1}(x, y, z) & =a x+b y+c z \\
f_{1}\left(v_{2}\right) & =a x+b y+c z \\
f_{1}(1,1,0) & =a+b \\
0 & =a+b \\
a+b & =0 \\
a & =-b \tag{8}\\
f_{1}(x, y, z) & =a x+b y+c z \\
f_{1}\left(v_{3}\right) & =a x+b y+c z \\
f_{1}(0,1,1) & =b+c \\
0 & =b+c \\
b+c & =0 \tag{9}
\end{align*}
$$

from equation (8) $a=-b$ in equation (7) we get

$$
\begin{equation*}
b-c=-1 \tag{10}
\end{equation*}
$$

solve equation (9) and (10) we get $b=\frac{-1}{2}$.
Substitute $b=\frac{-1}{2}$ in equation (8) we get $a=\frac{1}{2}$.
from equation (9) we get $c=\frac{1}{2}$.
Thus we get,

$$
\begin{aligned}
& f_{1}(x, y, z)=\frac{1}{2} x-\frac{1}{2} y+\frac{1}{2} z \\
& f_{1}(x, y, z)=\frac{1}{2}(x-y+z)
\end{aligned}
$$

Similarly we define function $f_{2}: \mathbb{R}^{3} \rightarrow \mathbb{R}$ such that

$$
\begin{align*}
f_{2}(x, y, z)=a x & +b y+c z, \quad a, b, c \in \mathbb{R} \\
f_{2}(x, y, z) & =a x+b y+c z \\
f_{2}\left(v_{1}\right) & =a x+b y+c z \\
f_{2}(1,0,1) & =a+c \\
0 & =a+c \\
a+c & =0 \\
a & =-c \tag{11}\\
f_{2}(x, y, z) & =a x+b y+c z \\
f_{2}\left(v_{2}\right) & =a x+b y+c z \\
f_{2}(1,1,0) & =a+b \\
1 & =a+b \\
a+b & =1 \tag{12}\\
f_{2}(x, y, z) & =a x+b y+c z \\
f_{2}\left(v_{3}\right) & =a x+b y+c z \\
f_{2}(0,1,1) & =b+c \\
0 & =b+c \\
b+c & =0 \tag{13}
\end{align*}
$$

from equation (11) $a=-c$ in equation (12) we get

$$
\begin{equation*}
b-c=1 \tag{14}
\end{equation*}
$$

solve equation (13) and (14) we get $b=\frac{1}{2}$.
Substitute $b=\frac{1}{2}$ in equation (14) we get $c=\frac{-1}{2}$.
from equation (11) we get $a=\frac{1}{2}$.
Thus we get,

$$
\begin{aligned}
& f_{2}(x, y, z)=\frac{1}{2} x+\frac{1}{2} y-\frac{1}{2} z \\
& f_{2}(x, y, z)=\frac{1}{2}(x+y-z)
\end{aligned}
$$

Now we define function $f_{3}: \mathbb{R}^{3} \rightarrow \mathbb{R}$ such that

$$
\begin{align*}
f_{3}(x, y, z)=a x & +b y+c z, \quad a, b, c \in \mathbb{R} \\
f_{3}(x, y, z) & =a x+b y+c z \\
f_{3}\left(v_{1}\right) & =a x+b y+c z \\
f_{3}(1,0,1) & =a+c \\
0 & =a+c \\
a+c & =0 \\
a & =-c \tag{15}
\end{align*}
$$

$$
\begin{align*}
f_{3}(x, y, z) & =a x+b y+c z \\
f_{3}\left(v_{2}\right) & =a x+b y+c z \\
f_{3}(1,1,0) & =a+b \\
0 & =a+b \\
a+b & =0 \tag{16}\\
f_{3}(x, y, z) & =a x+b y+c z \\
f_{3}\left(v_{3}\right) & =a x+b y+c z \\
f_{3}(0,1,1) & =b+c \\
1 & =b+c \\
b+c & =1 \tag{17}
\end{align*}
$$

from equation (15) $a=-c$ in equation (16) we get

$$
\begin{equation*}
b-c=0 \tag{18}
\end{equation*}
$$

solve equation (17) and (18) we get $b=\frac{1}{2}$.
Substitute $b=\frac{1}{2}$ in equation (17) we get $c=\frac{1}{2}$.
from equation (15) we get $a=\frac{-1}{2}$.
Thus we get,

$$
\begin{aligned}
f_{3}(x, y, z) & =\frac{-1}{2} x+\frac{1}{2} y+\frac{1}{2} z \\
f_{3}(x, y, z) & =\frac{1}{2}(-x+y+z)
\end{aligned}
$$

Thus $B^{*}=\left\{f_{1}, f_{2}, f_{3}\right\}$ is a dual basis for \mathbb{R}^{3}.
where,

$$
\begin{aligned}
& f_{1}(x, y, z)=\frac{1}{2}(x-y+z) \\
& f_{2}(x, y, z)=\frac{1}{2}(x+y-z) \\
& f_{3}(x, y, z)=\frac{1}{2}(-x+y+z)
\end{aligned}
$$

Theorem 5 Let $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be a basis for V and $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ be a basis for V^{*} then prove that for any $v \in V$

$$
v=f_{1}(v) v_{1}+f_{2}(v) v_{2}+\ldots+f_{n}(v) v_{n}
$$

and for any $f \in V^{*}$

$$
f=f\left(v_{1}\right) f_{1}+f\left(v_{2}\right) f_{2}+\ldots+f\left(v_{n}\right) f_{n}
$$

Proof: Here $B=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis of a vector basis for V and $B^{*}=\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ be a basis for V^{*}
$\therefore B$ is linearly independent and $[B]=V$ and
B^{*} is linearly independent and $\left[B^{*}\right]=V^{*}$
(i) Let

$$
\begin{align*}
& v \in V \\
& v \in V=[B] \\
& \begin{aligned}
v & \in[B] \\
v & =\alpha_{1} v_{1}+\alpha_{2} v_{2}+\ldots+\alpha_{n} v_{v}, \quad \forall \alpha_{i} \in \mathbb{R}, \quad i=1,2, \ldots n
\end{aligned} \\
& \qquad \begin{aligned}
& f_{1}(v)=f_{1}\left(\alpha_{1} v_{1}+\alpha_{2} v_{2}+\ldots+\alpha_{n} v_{v}\right) \\
&=f_{1}\left(\alpha_{1} v_{1}\right)+f_{1}\left(\alpha_{2} v_{2}\right)+\ldots+f_{1}\left(\alpha_{n} v_{n}\right) \\
&=\alpha_{1}\left(f_{1}\left(v_{1}\right)\right)+\alpha_{2}\left(f_{1}\left(v_{2}\right)\right)+\ldots+\alpha_{n}\left(f_{1}\left(v_{n}\right)\right) \\
&=\alpha_{1}(1)+\alpha_{2}(0)+\ldots+\alpha_{n}(0) \\
& f
\end{aligned} \tag{19}
\end{align*}
$$

Similarly we can prove that,

$$
\begin{aligned}
f_{2}(v) & =\alpha_{2} \\
f_{3}(v) & =\alpha_{3} \\
\vdots & \\
f_{1 n}(v) & =\alpha_{n}
\end{aligned}
$$

Substitute this values in equation (19) we get,

$$
v=f_{1}(v) v_{1}+f_{2}(v) v_{2}+\ldots+f_{n}(v) v_{n}
$$

(ii) Let

$$
\begin{align*}
& f \in V^{*} \\
& f \in V^{*}=\left[B^{*}\right] \\
& f \in\left[B^{*}\right] \\
& f=\alpha_{1} f_{1}+\alpha_{2} f_{2} \ldots+\alpha_{n} f_{n}, \quad \forall \alpha_{i} \in \mathbb{R}, \quad i=1,2, \ldots n \tag{20}\\
& \\
& \begin{aligned}
f\left(v_{1}\right) & =\left(\alpha_{1} f_{1}+\alpha_{2} f_{2} \ldots+\alpha_{n} f_{n}\right)\left(v_{1}\right) \\
& =\left(\alpha_{1} f_{1}\right)\left(v_{1}\right)+\left(\alpha_{2} f_{2}\right)\left(v_{1}\right)+\ldots+\left(\alpha_{n} f_{n}\right)\left(v_{1}\right) \\
& =\alpha_{1}\left(f_{1}\left(v_{1}\right)\right)+\alpha_{2}\left(f_{2}\left(v_{1}\right)\right)+\ldots+\alpha_{n}\left(f_{n}\left(v_{1}\right)\right) \\
& =\alpha_{1}(1)+\alpha_{2}(0)+\ldots+\alpha_{n}(0) \\
f\left(v_{1}\right) & =\alpha_{1}
\end{aligned}
\end{align*}
$$

Similarly we can prove that,

$$
\begin{aligned}
f\left(v_{2}\right) & =\alpha_{2} \\
f\left(v_{3}\right) & =\alpha_{3} \\
\vdots & \\
f\left(v_{n}\right) & =\alpha_{n}
\end{aligned}
$$

Substitute this values in equation (20) we get,

$$
f=f\left(v_{1}\right) f_{1}+f\left(v_{2}\right) f_{2}+\ldots+f\left(v_{n}\right) f_{n}
$$

3 Operator Equations

Definition 3.1 Let $T: U \rightarrow V$ be a linear map and the solution of the equation

$$
\begin{equation*}
T\left(u_{0}\right)=v_{0} \quad \text { where } v_{0} \text { is a fixed vector in } V, \tag{21}
\end{equation*}
$$

then the equation (21) is called an Operator Equation.
Definition 3.2 If $v_{0}=\overline{0}_{V}$, then the set of solution of the equation

$$
\begin{equation*}
T(u)=\overline{0}_{V} \tag{22}
\end{equation*}
$$

Then equation (22) is called homogeneous (H) equation and solution of this equation is called kernel of T.

Definition 3.3 If $v_{0} \neq \overline{0}_{V}$ then equation (21) is called non-homogeneous (NH) equation.
Theorem 6 Let $T: U \rightarrow V$ be a linear map.Given $v_{0} \neq \overline{0}_{V}$ in V, the non-homogeneous equation

$$
(N H) \quad T(u)=v_{0}
$$

and the associated homogeneous equation

$$
\text { (H) } \quad T(u)=\overline{0}_{V}
$$

have the following properties:
(a) If $v_{0} \in R(T)$ and (H) has the trivial solution, namely $u=\overline{0}_{U}$ as its only solution, then (NH) has a unique solution.
(b) If $v_{0} \in R(T)$ and (H) has a nontrivial solution, namely a solution $u \neq \overline{0}_{U}$, then (NH) has an infinite number of solutions.In this case if u_{0} is a solution of (NH) is the linear variety $u_{0}+K$, where $K=N(T)$ is the set of all solutions of (H).

Proof: (a) If $v_{0} \in R(T)$, then $T(u)=v_{0}$ has a solution.
If $T(u)=\overline{0}_{V}$ has only one solution $u=\overline{0}_{U}$.
Then $N(T)=\left\{\overline{0}_{U}\right\}$
so, T is one-one.
This means $T(u)=v_{0}$ cannot more than one solution.
i.e. the solution of (NH) is unique.
(b) If $T(u)=\overline{0}_{V}$ has a nonzero solution, then $N(T) \neq\left\{\overline{0}_{U}\right\}$.

Let $u_{0} \in U$ be a solution of (NH). It exists because $v_{0} \in R(T)$.
Then $T\left(u_{0}\right)=v_{0}$.
Now if $u_{k} \in N(T)$, then

$$
\begin{aligned}
T\left(u_{0}+u_{k}\right) & =T\left(u_{0}\right)+T\left(u_{k}\right) \quad(\because T \text { is linear }) \\
& =v_{0}+\overline{0}_{V} \\
& =v_{0}
\end{aligned}
$$

Therefore, $u_{0}+u_{k}$ is a solution of (NH).
This is true for every $u_{k} \in N(T)$, and $N(T)$ has infinite number of elements.
So, (NH) has infinite number of solutions.

From above discussion it is obvious that $u_{0}+K$, where $K=N(T)$, is contained in the solution set of (NH).
Conversely, if w be any other solution of (NH), then

$$
T(w)=v_{0}=T\left(u_{0}\right)
$$

then

$$
\begin{aligned}
T(w)-T\left(u_{0}\right) & =\overline{0}_{V} \\
T\left(w-u_{o}\right) & =\overline{0}_{V} \\
w-u_{0} & \in N(T)=K \\
w & \in u_{0}+K
\end{aligned}
$$

Thus, the solution set of $(N H)$ is precisely $u_{0}+K$.
Example 5 Let $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{3}$ be a linear map defined by
$T\left(e_{1}\right)=\frac{1}{2} f_{1}, \quad T\left(e_{2}\right)=\frac{1}{2} f_{1}, \quad T\left(e_{3}\right)=f_{2}, \quad T\left(e_{4}\right)=f_{2}, \quad T\left(e_{5}\right)=\overline{0}$.
where $\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right\}$ is the standard basis for \mathbb{R}^{5} and $\left\{f_{1}, f_{2}, f_{3}\right\}$ is the standard basis for \mathbb{R}^{3}.Then solve the equation

$$
T(u)=(1,1,0)
$$

Solution: First we calculate the value of $T\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$:

$$
\begin{aligned}
T\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right) & =x_{1} T\left(e_{1}\right)+x_{2} T\left(e_{2}\right)+x_{3} T\left(e_{3}\right)+x_{4} T\left(e_{4}\right)+x_{5} T\left(e_{5}\right) \\
& =x_{1} \frac{1}{2} f_{1}+x_{2} \frac{1}{2} f_{1}+x_{3} f_{2}+x_{4} f_{2}+x_{5} \overline{0} \\
& =\frac{x_{1}}{2}(1,0,0)+\frac{x_{2}}{2}(1,0,0)+x_{3}(0,1,0)+x_{4}(0,1,0)+x_{5}(0,0,0) \\
& =\left(\frac{x_{1}+x_{2}}{2}, x_{3}+x_{4}, 0\right)
\end{aligned}
$$

The associated homogeneous equation is:

$$
\begin{gathered}
T\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=\overline{0} \\
\left(\frac{x_{1}+x_{2}}{2}, x_{3}+x_{4}, 0\right)=(0,0,0) \\
\frac{x_{1}+x_{2}}{2}=0, \quad x_{3}+x_{4}=0
\end{gathered}
$$

we get, $x_{2}=-x_{1}, x_{3}=-x_{4}$

Thus, the kernel of T is the set of all vectors of the form $\left(x_{1},-x_{1}, x_{3},-x_{3}, x_{5}\right)$
i.e. $x_{1}(1,-1,0,-, 0)+x_{3}(0,0,1,-1,0)+x_{5}(0,0,0,0,1)$. Hence

$$
N(T)=[(1,-1,0,0,0),(0,0,1,-1,0),(0,0,0,0,1)]
$$

One particular solution of $T(u)=(1,1,0)$ is $u_{0}=(2,0,1,0,0)$, which is obtained by putting $x_{1}=2, x_{2}=0, x_{3}=1, x_{4}=0, x_{5}=0$.
So the complete solution of the equation

$$
T(u)=(1,1,0)
$$

is the linear variety $(2,0,1,0,0)+N(T)$, i.e. the set

$$
(2,0,1,0,0)+\{(a,-a, b,-b, c) / a, b, c \text { are real numbers }\}
$$

4 Annihilators:

Definition 4.1 Let V be a real vector space and S be a non-empty subset of a vector space V, then the set $\left\{f \in V^{*} / f(x)=0, \forall x \in S\right\}$ is called an annihilators of a set S and it is denoted by S^{0}.

$$
S^{0}=\left\{f \in V^{*} / f(x)=0, \forall x \in S\right\}
$$

Theorem 7 Let S be a non-empty subset of a vector space V, then prove that S^{0} is a subspace of V^{*}.

Proof: Here S is a non-empty subset of a vector space V. let V be a real vector space and V^{*} be a dual space of a vector space V.

$$
\begin{gathered}
S^{0}=\left\{f \in V^{*} / f(x)=0, \forall x \in S\right\} \\
\overline{0}(x)=0, \quad \forall x \in S \\
\overline{0} \in S^{0} \\
S^{0} \neq \phi
\end{gathered}
$$

(i) Let $f_{1}, f_{2} \in S^{0}$,we have to prove that $f_{1}+f_{2} \in S^{0}$

Here $f_{1}, f_{2} \in S^{0}$
So $f_{1}(x)=0, \quad f_{2}(x)=0, \quad \forall x \in S$

$$
\begin{aligned}
\left(f_{1}+f_{2}\right)(x) & =f_{1}(x)+f_{2}(x) \\
& =0+0 \\
& =0 \\
f_{1}+f_{2} & \in S^{0}
\end{aligned}
$$

(ii) Let α be a scalar and let $f \in S^{0}$ then to prove that $\alpha f \in S^{0}$. Here $f \in S^{0}$ so $f(x)=0, \forall x \in S$

$$
\begin{aligned}
((\alpha f)(x) & =\alpha f(x) \\
& =\alpha 0 \\
& =0
\end{aligned}
$$

So from (i) and (ii) S^{0} is a subspace of dual space of V^{*}.
Note: If $S=\overline{0}$ then $S^{0}=V^{*}$.

5 Bilinear form

Definition 5.1 Let V be a real vector space, a bilinear form $f: V \times V \rightarrow \mathbb{R}$ is a function of two variables such that,
$\forall x, y, z \in V$ and $\alpha, \beta \in \mathbb{R}$

1. $f(\alpha x+\beta y, z)=\alpha f(x, z)+\beta f(y, z)$
2. $f(x, \alpha y+\beta z)=\alpha f(x, y)+\beta f(x, z)$

Example 6 If $x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2}$ and $f(x, y)=x_{1} y_{2}-x_{2} y_{1}$ then prove that f is a bilinear form.

Solution: Here \mathbb{R}^{2} is a vector space.
Here $x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2}$ and function $f: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
f(x, y)=x_{1} y_{2}-x_{2} y_{1}
$$

we have to prove f is a bilinear form.
(i) Take $x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right), z=\left(z_{1}, z_{2}\right) \in \mathbb{R}^{2}$ and $\alpha, \beta \in \mathbb{R}$ we have to prove $f(\alpha x+\beta y, z)=\alpha f(x, z)+\beta f(y, z)$

$$
\begin{aligned}
f(\alpha x+\beta y, z) & =f\left(\alpha\left(x_{1}, x_{2}\right)+\beta\left(y_{1}, y_{2}\right),\left(z_{1}, z_{2}\right)\right) \\
& =f\left(\left(\alpha x_{1}+\beta y_{1}, \alpha x_{2}+\beta y_{2}\right),\left(z_{1}, z_{2}\right)\right) \\
& =\left(\alpha x_{1}+\beta y_{1}\right) z_{2}-\left(\alpha x_{2}+\beta y_{2}\right) z_{1} \\
& =\alpha x_{1} z_{2}+\beta y_{1} z_{2}-\alpha x_{2} z_{1}-\beta y_{2} z_{1} \\
& =\alpha\left(x_{1} z_{2}-x_{2} z_{1}\right)+\beta\left(y_{1} z_{2}-y_{2} z_{1}\right) \\
& =\alpha f(x, z)+\beta f(y, z)
\end{aligned}
$$

(ii) Take $x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right), z=\left(z_{1}, z_{2}\right) \in \mathbb{R}^{2}$ and $\alpha, \beta \in \mathbb{R}$ we have to prove $f(x, \alpha y+\beta z)=\alpha f(x, y)+\beta f(x, z)$

$$
\begin{aligned}
f(x, \alpha y+\beta z) & =f\left(\left(x_{1}, x_{2}\right), \alpha\left(y_{1}, y_{2}\right)+\beta\left(z_{1}, z_{2}\right)\right) \\
& =f\left(\left(x_{1}, x_{2}\right),\left(\alpha y_{1}+\beta z_{1}, \alpha y_{2}+\beta z_{2}\right)\right) \\
& =x_{1}\left(\alpha y_{2}+\beta z_{2}\right)-x_{2}\left(\alpha y_{1}+\beta z_{1}\right) \\
& =\alpha x_{1} y_{2}+\beta x_{1} z_{2}-\alpha x_{2} y_{1}-\beta x_{2} z_{1} \\
& =\alpha\left(x_{1} y_{2}-x_{2} y_{1}\right)+\beta\left(x_{1} z_{2}-x_{2} z_{1}\right) \\
& =\alpha f(x, y)+\beta f(x, z)
\end{aligned}
$$

From (i) and (ii) f is a bilinear form.

6 Exercises:

1. Find the dual basis corresponding to a basis $B=\{(1,-1,1),(1,1,-1),(-1,1,1)\}$ of \mathbb{R}^{3}.
2. Find the dual basis corresponding to a basis $B=\{(1,-2,1),(-2,0,1),(0,0,1)\}$ of \mathbb{R}^{3}
3. $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ defined by $T\left(x_{1} \cdot x_{2}, x_{3}\right)=\left(x_{1}+x_{2}, x_{1}-x_{3}\right)$, then solve the operator equation $T\left(x_{1} \cdot x_{2}, x_{3}\right)=(6,3)$.
4. If $x=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}, y=\left(y_{1}, y_{2}, y_{3}\right) \in \mathbb{R}^{3}$ and $f(x, y)=x_{1} y_{2}-3 x_{2} y_{3}+x_{3} y_{1}$, then prove that f is bilinear form.
5. If $x=\left(x_{1}, x_{2}\right), y=\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2}$ and $f(x, y)=\left(x_{1}-y_{1}\right)^{2}+x_{2} y_{2}$. Is f is bilinear form on \mathbb{R}^{2}.
