SHRI GOVIND GURU UNIVERSITY B.Sc.Sem-5 Material BSC0C506C:Mathematics(Theory) Linear Algebra-II

Unit-I

Unit-I: Composition of Linear Maps, The Space L(U, V), The Operator Equation, Linear Functional, Dual Space, Dual of Dual, Dual Basis Existence Theorem, Annihilators, bilinear forms.

1 Linear Transformation

Definition 1.1 Let U and V are two vector space then a mapping $T : U \to V$ is called a Linear Transformation if it satisfies the following condition:

1. $\forall \ \overline{x}, \overline{y} \in U, \ T(\overline{x} + \overline{y}) = T(\overline{x}) + T(\overline{y})$ 2. $\forall \ \overline{x} \in U, \ \alpha \in \mathbb{R}, \ T(\alpha \overline{x}) = \alpha T(\overline{x})$

Definition 1.2 Let $T: U \to V$ and $S: U \to V$ be two Linear Transformation then the sum of T and S is denoted by T + S and defined as $T + S: U \to V$

$$(T+S)(\overline{x}) = T(\overline{x}) + S(\overline{x}), \ \forall \ \overline{x} \in U$$

Example 1 $T : \mathbb{R}^2 \to \mathbb{R}^3$, $T(\overline{x}) = (x + y, x - y, 0)$, $S : \mathbb{R}^2 \to \mathbb{R}^3$, $S(\overline{x}) = (x - y, x + y, 2x)$, then find (T + S).

Solution:

$$(T+S)(\overline{x}) = T(\overline{x}) + S(\overline{x}) = (x+y, x-y, 0) + (x-y, x+y, 2x) = (x+y+x-y, x-y+x+y, 0+2x) = (2x, 2x, 2x)$$

Definition 1.3 Let $T : U \to V$ be a Linear Transformation and let α be a scalar then the scalar multiplication of a linear transformation T by α denoted by αT and defined as $\alpha T : U \to V$

$$(\alpha T)(\overline{x}) = \alpha T(\overline{x}), \ \forall \ \overline{x} \in U$$

Definition 1.4 The set f all Linear Transformation from U to V is denoted by L(U, V).

$$L(U,V) = \{T/T : U \to V \text{ is a linear transformation}\}$$

Definition 1.5 Let $T : U \to V$ be a linear transformation and let $S : V \to W$ be a linear transformation then, the composition of S and T is denoted by SoT and defined as SoT : $U \to W$.

$$SoT(\overline{x}) = S(T(\overline{x})), \ \forall \ \overline{x} \in U$$

Theorem 1 *Prove that the sum of two linear transformation is also linear transformation.*

OR

If $T, S \in L(U, V)$ then prove that $S + T \in L(U, V)$.

Proof: Here $T, S \in L(U, V)$ i.e. $T : U \to V$ and $S : U \to V$ are linear transformation. And we have to prove $S + T : U \to V$ is also linear transformation.

(i) Let $\overline{x}, \overline{y} \in U$ to prove that $(S+T)(\overline{x}+\overline{y}) = (S+T)(\overline{x}) + (S+T)(\overline{y})$

$$(S+T)(\overline{x}+\overline{y}) = S(\overline{x}+\overline{y}) + T(\overline{x}+\overline{y}) \qquad (\because By \ Definition(1.2))$$
$$= (S(\overline{x}) + S(\overline{y})) + (T(\overline{x}) + T(\overline{y})) \quad (\because S, T \ areL.T.)$$
$$= S(\overline{x}) + T(\overline{x}) + S(\overline{y}) + T(\overline{y})$$
$$= (S+T)(\overline{x}) + (S+T)(\overline{y}) \qquad (\because By \ Definition(1.2))$$

(ii) Let $\alpha \in \mathbb{R}$ and let $x \in U$ to prove that $(S+T)(\alpha \overline{x}) = \alpha(S+T)(\overline{x})$.

$$(S+T)(\alpha \overline{x}) = S(\alpha \overline{x}) + T(\alpha \overline{x}) \qquad (\because By \ Definition(1.2))$$
$$= \alpha S(\overline{x}) + \alpha T(\overline{x}) \qquad (\because S, T \ areL.T.)$$
$$= \alpha (S(\overline{x}) + T(\overline{x}))$$
$$= \alpha (S+T)(\overline{x})$$

So from (i) and (ii) $S + T : U \to V$ is also linear transformation.

Theorem 2 If $T \in L(U, V)$ and $\alpha \in \mathbb{R}$ then prove that $\alpha T \in L(U, V)$. **Proof:** Here $T : U \to V$ is a linear transformation and α be a scalar to prove that $\alpha T : U \to V$ is linear transformation.

(i) Let
$$x, y \in U$$
 to prove that $(\alpha T)(\overline{x} + \overline{y}) = (\alpha T)(\overline{x}) + (\alpha T)(\overline{y})$
 $(\alpha T)(\overline{x} + \overline{y}) = \alpha(T(\overline{x} + \overline{y}))$ ($\because By \ Definition(1.3)$)
 $= \alpha(T(\overline{x}) + T(\overline{y}))$ ($\because T \ is \ L.T.$)
 $= \alpha T(\overline{x}) + \alpha T(\overline{y})$
 $= (\alpha T)(\overline{x}) + (\alpha T)(\overline{y})$

(ii) Let $x \in U$ and let β be a scalar $\beta \in \mathbb{R}$ to prove that $(\alpha T)(\beta \overline{x}) = \beta((\alpha T)(\overline{x}))$

$$(\alpha T)(\beta \overline{x}) = \alpha(T(\beta(\overline{x}))) \qquad (\because By \ Definition(1.3)) \\ = \alpha(\beta(T(\overline{x}))) \qquad (\because T \ is \ L.T.) \\ = (\alpha\beta)T(\overline{x}) \\ = (\beta\alpha)T(\overline{x}) \\ = \beta((\alpha T)(\overline{x})) \qquad (\because By \ Definition(1.3))$$

From (i) and (ii) $\alpha T : U \rightarrow V$ *is a linear transformation.*

Theorem 3 The composition of two linear transformation is also a linear transformation.

OR

If $T \in L(U, V)$ and $S \in L(V, W)$, then prove that $SoT \in L(V, W)$.

Proof: Here $T \in L(U, V)$, so $T : U \to V$ is a linear transformation and $S \in L(V, W)$ so $S : V \to W$ is a linear transformation. And we have to prove that $SoT : U \to W$ is also linear transformation. (i) Let $\overline{x}, \overline{y} \in U$ to prove that $(SoT)(\overline{x} + \overline{y}) = (SoT)(\overline{x}) + (SoT)(\overline{y})$.

$$\begin{aligned} (SoT)(\overline{x} + \overline{y}) &= S(T(\overline{x} + \overline{y})) & (\because By \ Definition(1.5)) \\ &= S(T(\overline{x}) + T(\overline{y})) & (\because T \ is \ L.T.) \\ &= S(T(\overline{x})) + S(T(\overline{y})) & (\because S \ is \ L.T.) \\ &= (SoT)(\overline{x}) + (SoT)(\overline{y}) & (\because By \ Definition(1.5)) \end{aligned}$$

(ii) Let $\overline{x} \in U$ and let α be a scalar to prove that $(SoT)(\alpha \overline{x}) = \alpha((SoT)(\overline{x}))$.

$$(SoT)(\alpha \overline{x}) = S(T(\alpha \overline{x})) \qquad (\because By \ Definition(1.5))$$
$$= S(\alpha T(\overline{x}))) \qquad (\because T \ is \ L.T.)$$
$$= \alpha(S(T(\overline{x}))) \qquad (\because S \ is \ L.T.)$$
$$= \alpha((SoT)(\overline{x})) \qquad (\because By \ Definition(1.5))$$

So from (i) and (ii) $SoT : U \to W$ is a linear transformation.

Example 2 Let $T : \mathbb{R}^2 \to \mathbb{R}^2$, T(x, y) = (x - y, x + y), $S : \mathbb{R}^2 \to \mathbb{R}^2$, S(x, y) = (x + y, x - y)then find SoT and ToS. Solution: Let $(x, y) \in \mathbb{R}^2$

$$(SoT)(x, y) = S(T(x, y))$$

= $S(x - y, x + y)$
= $(x - y + x + y, x - y - x - y)$
= $(2x, -2y)$
 $(ToS)(x, y) = T(S(x, y))$
= $T(x + y, x - y)$
= $(x + y - x + y, x + y + x - y)$
= $(2y, 2x)$

2 Linear functional and Dual Space

Definition 2.1 Let V be a real vector space then a mapping $f : V \to \mathbb{R}$ is said be a linear functional if it satisfies the following conditions:

- $I. \ f(x+y) = f(x) + f(y), \quad \forall x, y \in V$
- 2. $f(\alpha x) = \alpha f(x), \quad \forall x \in V \text{ and } \alpha \in \mathbb{R}$

Note: The set of all linear functional from V to \mathbb{R} is denoted by $L(V, \mathbb{R})$ or V^* .

$$L(V,\mathbb{R}) = V^* = \{f/f : V \to \mathbb{R} \text{ is a linear functional}\}$$

Definition 2.2 Let V^* be the set of all linear functional from V to \mathbb{R} , where V is a vector space. for $f, g \in V^*$ and $\alpha \in \mathbb{R}$,

- 1. $(f+g)(x) = f(x) + g(x), \quad \forall x \in V$
- 2. $(\alpha f)(x) = \alpha(f(x)) \quad \forall x \in V, \ \alpha \in \mathbb{R}$

under this operation V^* is a vector space and this vector space V^* is called a **Dual space** of a vector space V.

Theorem 4 State and Prove Dual Basis existence theorem.

Statement: Let $B = \{v_1, v_2, \dots, v_n\}$ be a basis for a vector space V.let V^* be a dual space of V, suppose $f_1, f_2, \dots, f_n \in V^*$ such that

$$f_i(v_j) = 1$$
 $i = j$
= 0 $i \neq j$ $i, j = 1, 2, ... n$

Then prove that $B^* = \{f_1, f_2, \dots, f_n\}$ is a basis for V^* . **Proof:** Here $B = \{v_1, v_2, \dots, v_n\}$ be a basis for a vector space V and V^* be a dual space of V, and $f_1, f_2, \dots, f_n \in V^*$ such that

$$f_i(v_j) = 1 i = j = 0 i \neq j i, j = 1, 2, \dots n (1)$$

we have tp prove $B^* = \{f_1, f_2, \dots, f_n\}$ is a basis for V^* .

(i) First we shall prove that B^* is Linearly Independent

Consider,

$$\begin{aligned} \alpha_1 f_1 + \alpha_2 f_2 + \ldots + \alpha_n f_n &= 0 \quad where \ \alpha_i \in \mathbb{R}, \ i = 1, 2, \ldots, n. \\ (\alpha_1 f_1 + \alpha_2 f_2 + \ldots + \alpha_n f_n)(v_1) &= \overline{0}(v_1) \\ (\alpha_1 f_1)(v_1) + (\alpha_2 f_2)(v_1) + \ldots + (\alpha_n f_n)(v_1) &= 0 \\ \alpha_1(f_1)(v_1) + \alpha_2(f_2)(v_1) + \ldots + \alpha_n(f_n)(v_1) &= 0 \quad (\because By \ Definition(1.3)) \\ \alpha_1(1) + \alpha_2(0) + \ldots + \alpha_n(0) &= 0 \quad (By \ Equation \ (1)) \\ \alpha_1(1) &= 0 \\ \alpha_1 &= 0 \end{aligned}$$

Similarly, we can prove $\alpha_2 = 0, \alpha_3 = 0, \dots, \alpha_n = 0$. so $B^* = \{f_1, f_2, \dots, f_n\}$ is Linearly Independent.

(ii) Now we have to prove that $[B^*] = V^*$.

we know that $[B^*] \subseteq V^*$. so only to prove $V^* \subseteq [B^*]$ take $f \in V^*$, so $f : V \to \mathbb{R}$ is a linear functional. Suppose,

$$f(v_1) = \alpha_1$$

$$f(v_2) = \alpha_2$$

$$\vdots$$

$$f(v_n) = \alpha_n, \quad where \ \alpha_i \in \mathbb{R}, \ i = 1, 2, ..., n.$$

Let us define a function $\phi : V \to \mathbb{R}$ *such that*

$$\phi = \alpha_1 f_1 + \alpha_2 f_2 + \ldots + \alpha_n f_n \tag{2}$$

Now,

$$\begin{aligned} \phi(v_1) &= (\alpha_1 f_1 + \alpha_2 f_2 + \ldots + \alpha_n f_n)(v_1) \\ &= (\alpha_1 f_1)(v_1) + (\alpha_2 f_2)(v_1) + \ldots + (\alpha_n f_n)(v_1) \\ &= \alpha_1(f_1)(v_1) + \alpha_2(f_2)(v_1) + \ldots + \alpha_n(f_n)(v_1) \quad (\because By \ Definition(1.3)) \\ &= \alpha_1(1) + \alpha_2(0) + \ldots + \alpha_n(0) \quad (By \ Equation \ (1)) \\ \phi(v_1) &= \alpha_1 \end{aligned}$$

Similarly, we can prove

$$\phi(v_2) = \alpha_2$$

$$\phi(v_3) = \alpha_3$$

$$\vdots$$

$$\phi(v_n) = \alpha_n$$

So, $\phi(v_i) = \alpha_i$, where $i = 1, 2, ..., n$

also here

$$f(v_i) = \alpha_i$$

$$\phi(v_i) = f(v_i)$$

$$\phi = f$$

so by equation (2)

$$f = \alpha_1 f_1 + \alpha_2 f_2 + \ldots + \alpha_n f_n$$
$$f \in [B^*]$$
$$V^* \subseteq [B^*]$$

 $[B^*] = V^*$

so,

so from (i) and (ii) $B^* = \{f_1, f_2, ..., f_n\}$ is a basis for V^* .

Definition 2.3 Let V be a vector space and V^* be a dual space of a vector space V.Let dim V = nthen dim $V^* = n$ and basis $B^* = \{f_1, f_2, \ldots, f_n\}$ of V^* corresponding to a basis $B = \{v_1, v_2, \ldots, v_n\}$ of a vector space V is called a dual basis for a vector space V.

Example 3 Find the dual basis corresponding to a basis $\{(2, 1), (3, 1)\}$ of \mathbb{R}^2 . Solution: Here \mathbb{R}^2 is a vector space $\therefore \dim \mathbb{R}^2 = 2$ Let $(\mathbb{R}^2)^*$ be a dual space of \mathbb{R}^2 . $\therefore \dim(\mathbb{R}^2)^* = 2$ Also here $B = \{(2, 1), (3, 1)\}$ is a basis for \mathbb{R}^2 . let $v_1 = (2, 1)$ and $v_2 = (3, 1)$ to find $B^* = \{f_1, f_2\}$ a dual basis for \mathbb{R}^2 . Define function $f_1 : \mathbb{R}^2 \to \mathbb{R}$ such that

 $f_1(x,y) = ax + by, \ a, b \in \mathbb{R}$

$$f_{1}(x, y) = ax + by$$

$$f_{1}(v_{1}) = ax + by$$

$$f_{1}(2, 1) = 2a + b$$

$$1 = 2a + b$$

$$2a + b = 1$$
(3)

$$f_{1}(x, y) = ax + by$$

$$f_{1}(v_{2}) = ax + by$$

$$f_{1}(3, 1) = 3a + b$$

$$0 = 3a + b$$

$$3a + b = 0$$
(4)

Solve equation (3) and (4) we get a = -1. Substitute a = -1 in equation (3) we get b = 3. So,we get

 $f_1(x,y) = -x + 3y$

Now, we define function $f_2 : \mathbb{R}^2 \to \mathbb{R}$ *such that*

 $f_2(x,y) = cx + dy, \ c,d \in \mathbb{R}$

$$f_{2}(x, y) = cx + dy$$

$$f_{2}(v_{1}) = cx + dy$$

$$f_{2}(2, 1) = 2c + d$$

$$0 = 2c + d$$

$$2c + d = 0$$
(5)

$$f_{2}(x, y) = cx + dy$$

$$f_{2}(v_{2}) = cx + dy$$

$$f_{2}(3, 1) = 3c + d$$

$$1 = 3c + d$$

$$3c + d = 1$$
(6)

Solve equation (5) and (6) we get c = 1. Substitute c = 1 in equation (5) we get d = -2. So,we get

$$f_2(x,y) = x - 2y$$

Thus $B^* = \{f_1, f_2\}$ is a dual basis for \mathbb{R}^2 . where,

$$f_1(x,y) = -x + 3y$$
$$f_2(x,y) = x - 2y$$

Example 4 Find the dual basis corresponding to a basis $\{(1,0,1), (1,1,0), (0,1,1)\}$ of \mathbb{R}^3 . Solution: Here \mathbb{R}^3 is a vector space $\therefore \dim \mathbb{R}^3 = 3$ Let $(\mathbb{R}^3)^*$ be a dual space of \mathbb{R}^3 .

Let (\mathbb{R}^{n}) be a dual space of \mathbb{R}^{n} . $\therefore \dim(\mathbb{R}^{3})^{*} = 3$ Also here $B = \{(1, 0, 1), (1, 1, 0), (0, 1, 1)\}$ is a basis for \mathbb{R}^{3} . let $v_{1} = (1, 0, 1)$, $v_{2} = (1, 1, 0)$ and $v_{3} = (0, 1, 1)$ to find $B^{*} = \{f_{1}, f_{2}, f_{3}\}$ a dual basis for \mathbb{R}^{3} Let $v_{1} = (1, 0, 1), v_{2} = (1, 1, 0)$ and $v_{3} = (0, 1, 1)$ to find $B^{*} = \{f_{1}, f_{2}, f_{3}\}$ a dual basis for \mathbb{R}^{3} . Define function $f_{1} : \mathbb{R}^{3} \to \mathbb{R}$ such that

$$f_1(x, y, z) = ax + by + cz, \ a, b, c \in \mathbb{R}$$

$$f_{1}(x, y, z) = ax + by + cz$$

$$f_{1}(v_{1}) = ax + by + cz$$

$$f_{1}(1, 0, 1) = a + c$$

$$1 = a + c$$

$$a + c = 1$$
(7)

$$f_{1}(x, y, z) = ax + by + cz$$

$$f_{1}(v_{2}) = ax + by + cz$$

$$f_{1}(1, 1, 0) = a + b$$

$$0 = a + b$$

$$a + b = 0$$

$$a = -b$$
(8)

$$f_{1}(x, y, z) = ax + by + cz$$

$$f_{1}(v_{3}) = ax + by + cz$$

$$f_{1}(0, 1, 1) = b + c$$

$$0 = b + c$$

$$b + c = 0$$
(9)

from equation (8) a = -b in equation (7) we get

$$b - c = -1 \tag{10}$$

solve equation (9) and (10) we get $b = \frac{-1}{2}$. Substitute $b = \frac{-1}{2}$ in equation (8) we get $a = \frac{1}{2}$. from equation (9) we get $c = \frac{1}{2}$. Thus we get,

$$f_1(x, y, z) = \frac{1}{2}x - \frac{1}{2}y + \frac{1}{2}z$$
$$f_1(x, y, z) = \frac{1}{2}(x - y + z)$$

Similarly we define function $f_2 : \mathbb{R}^3 \to \mathbb{R}$ such that $f_2(x, y, z) = ax + by + cz, \quad a, b, c \in \mathbb{R}$ $f_2(x, y, z) = ax + by + cz$ $f_2(v_1) = ax + by + cz$ $f_2(1, 0, 1) = a + c$ 0 = a + c a + c = 0 a = -c $f_2(x, y, z) = ax + by + cz$ $f_2(v_2) = ax + by + cz$ $f_2(v_1, v_2) = a + by + cz$ $f_2(v_1, v_2) = a + by + cz$

$$1 = a + b$$

$$a + b = 1 \tag{12}$$

$$f_{2}(x, y, z) = ax + by + cz$$

$$f_{2}(v_{3}) = ax + by + cz$$

$$f_{2}(0, 1, 1) = b + c$$

$$0 = b + c$$

$$b + c = 0$$
(13)

from equation (11) a = -c in equation (12) we get

$$b - c = 1 \tag{14}$$

solve equation (13) and (14) we get $b = \frac{1}{2}$. Substitute $b = \frac{1}{2}$ in equation (14) we get $c = \frac{-1}{2}$. from equation (11) we get $a = \frac{1}{2}$. Thus we get,

$$f_2(x, y, z) = \frac{1}{2}x + \frac{1}{2}y - \frac{1}{2}z$$
$$f_2(x, y, z) = \frac{1}{2}(x + y - z)$$

Now we define function $f_3 : \mathbb{R}^3 \to \mathbb{R}$ *such that*

 $f_3(x, y, z) = ax + by + cz, \ a, b, c \in \mathbb{R}$

$$f_{3}(x, y, z) = ax + by + cz$$

$$f_{3}(v_{1}) = ax + by + cz$$

$$f_{3}(1, 0, 1) = a + c$$

$$0 = a + c$$

$$a + c = 0$$

$$a = -c$$
(15)

$$f_{3}(x, y, z) = ax + by + cz$$

$$f_{3}(v_{2}) = ax + by + cz$$

$$f_{3}(1, 1, 0) = a + b$$

$$0 = a + b$$

$$a + b = 0$$
(16)

$$f_{3}(x, y, z) = ax + by + cz$$

$$f_{3}(v_{3}) = ax + by + cz$$

$$f_{3}(0, 1, 1) = b + c$$

$$1 = b + c$$

$$b + c = 1$$
(17)

from equation (15) a = -c in equation (16) we get

$$b - c = 0 \tag{18}$$

solve equation (17) and (18) we get $b = \frac{1}{2}$. Substitute $b = \frac{1}{2}$ in equation (17) we get $c = \frac{1}{2}$. from equation (15) we get $a = \frac{-1}{2}$. Thus we get,

$$f_3(x, y, z) = \frac{-1}{2}x + \frac{1}{2}y + \frac{1}{2}z$$
$$f_3(x, y, z) = \frac{1}{2}(-x + y + z)$$

Thus $B^* = \{f_1, f_2, f_3\}$ is a dual basis for \mathbb{R}^3 . where,

$$f_1(x, y, z) = \frac{1}{2}(x - y + z)$$
$$f_2(x, y, z) = \frac{1}{2}(x + y - z)$$
$$f_3(x, y, z) = \frac{1}{2}(-x + y + z)$$

Theorem 5 Let $\{v_1, v_2, \ldots, v_n\}$ be a basis for V and $\{f_1, f_2, \ldots, f_n\}$ be a basis for V^* then prove that for any $v \in V$

$$v = f_1(v)v_1 + f_2(v)v_2 + \ldots + f_n(v)v_n$$

and for any $f \in V^*$

$$f = f(v_1)f_1 + f(v_2)f_2 + \ldots + f(v_n)f_n$$

Proof: Here $B = \{v_1, v_2, \dots, v_n\}$ is a basis of a vector basis for V and $B^* = \{f_1, f_2, \dots, f_n\}$ be a basis for V^* \therefore B is linearly independent and [B] = V and

 B^* is linearly independent and $[B^*] = V^*$

(i) Let

$$v \in V$$

$$v \in V = [B]$$

$$v \in [B]$$

$$v = \alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_v, \quad \forall \ \alpha_i \in \mathbb{R}, \quad i = 1, 2, \ldots n$$
(19)

$$f_1(v) = f_1(\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_v)$$

= $f_1(\alpha_1 v_1) + f_1(\alpha_2 v_2) + \ldots + f_1(\alpha_n v_n)$
= $\alpha_1(f_1(v_1)) + \alpha_2(f_1(v_2)) + \ldots + \alpha_n(f_1(v_n))$
= $\alpha_1(1) + \alpha_2(0) + \ldots + \alpha_n(0)$
 $f_1(v) = \alpha_1$

Similarly we can prove that,

$$f_2(v) = \alpha_2$$

$$f_3(v) = \alpha_3$$

$$\vdots$$

$$f_{1n}(v) = \alpha_n$$

Substitute this values in equation (19) we get,

$$v = f_1(v)v_1 + f_2(v)v_2 + \ldots + f_n(v)v_n$$

(ii) Let

$$f \in V^*$$

$$f \in V^* = [B^*]$$

$$f \in [B^*]$$

$$f = \alpha_1 f_1 + \alpha_2 f_2 \dots + \alpha_n f_n, \quad \forall \; \alpha_i \in \mathbb{R}, \quad i = 1, 2, \dots n$$
(20)

$$f(v_1) = (\alpha_1 f_1 + \alpha_2 f_2 \dots + \alpha_n f_n)(v_1)$$

= $(\alpha_1 f_1)(v_1) + (\alpha_2 f_2)(v_1) + \dots + (\alpha_n f_n)(v_1)$
= $\alpha_1(f_1(v_1)) + \alpha_2(f_2(v_1)) + \dots + \alpha_n(f_n(v_1))$
= $\alpha_1(1) + \alpha_2(0) + \dots + \alpha_n(0)$
 $f(v_1) = \alpha_1$

Similarly we can prove that,

$$f(v_2) = \alpha_2$$
$$f(v_3) = \alpha_3$$
$$\vdots$$
$$f(v_n) = \alpha_n$$

Substitute this values in equation (20) we get,

$$f = f(v_1)f_1 + f(v_2)f_2 + \ldots + f(v_n)f_n$$

3 Operator Equations

Definition 3.1 Let $T: U \to V$ be a linear map and the solution of the equation

$$T(u_0) = v_0 \quad where \quad v_0 \text{ is a fixed vector in } V, \tag{21}$$

then the equation (21) is called an Operator Equation.

Definition 3.2 If $v_0 = \overline{0}_V$, then the set of solution of the equation

$$T(u) = \overline{0}_V \tag{22}$$

Then equation (22) is called homogeneous (H) equation and solution of this equation is called kernel of T.

Definition 3.3 If $v_0 \neq \overline{0}_V$ then equation (21) is called non-homogeneous (NH) equation.

Theorem 6 Let $T: U \to V$ be a linear map. Given $v_0 \neq \overline{0}_V$ in V, the non-homogeneous equation

$$(NH) T(u) = v_0$$

and the associated homogeneous equation

$$(H) T(u) = \overline{0}_V$$

have the following properties:

- (a) If $v_0 \in R(T)$ and (H) has the trivial solution, namely $u = \overline{0}_U$ as its only solution, then (NH) has a unique solution.
- (b) If $v_0 \in R(T)$ and (H) has a nontrivial solution, namely a solution $u \neq \overline{0}_U$, then (NH) has an infinite number of solutions. In this case if u_0 is a solution of (NH) is the linear variety $u_0 + K$, where K = N(T) is the set of all solutions of (H).

Proof: (a) If $v_0 \in R(T)$, then $T(u) = v_0$ has a solution. If $T(u) = \overline{0}_V$ has only one solution $u = \overline{0}_U$. Then $N(T) = {\overline{0}_U}$ so, T is one-one. This means $T(u) = v_0$ cannot more than one solution. *i.e.* the solution of (NH) is unique.

> (b) If $T(u) = \overline{0}_V$ has a nonzero solution, then $N(T) \neq {\overline{0}_U}$. Let $u_0 \in U$ be a solution of (NH). It exists because $v_0 \in R(T)$. Then $T(u_0) = v_0$. Now if $u_k \in N(T)$, then

$$T(u_0 + u_k) = T(u_0) + T(u_k) \quad (\because T \text{ is linear})$$
$$= v_0 + \overline{0}_V$$
$$= v_0$$

Therefore, $u_0 + u_k$ is a solution of (NH). This is true for every $u_k \in N(T)$, and N(T) has infinite number of elements. So, (NH) has infinite number of solutions. From above discussion it is obvious that $u_0 + K$, where K = N(T), is contained in the solution set of (NH).

Conversely, if w be any other solution of (NH), then

$$T(w) = v_0 = T(u_0)$$

then

$$T(w) - T(u_0) = \overline{0}_V$$

$$T(w - u_o) = \overline{0}_V$$

$$w - u_0 \in N(T) = K$$

$$w \in u_0 + K$$

Thus, the solution set of (NH) is precisely $u_0 + K$.

Example 5 Let $T : \mathbb{R}^5 \to \mathbb{R}^3$ be a linear map defined by $T(e_1) = \frac{1}{2}f_1, \ T(e_2) = \frac{1}{2}f_1, \ T(e_3) = f_2, \ T(e_4) = f_2, \ T(e_5) = \overline{0}.$ where $\{e_1, e_2, e_3, e_4, e_5\}$ is the standard basis for \mathbb{R}^5 and $\{f_1, f_2, f_3\}$ is the standard basis for \mathbb{R}^3 . Then solve the equation

T(u) = (1, 1, 0)

Solution: First we calculate the value of $T(x_1, x_2, x_3, x_4, x_5)$:

$$T(x_1, x_2, x_3, x_4, x_5) = x_1 T(e_1) + x_2 T(e_2) + x_3 T(e_3) + x_4 T(e_4) + x_5 T(e_5)$$

= $x_1 \frac{1}{2} f_1 + x_2 \frac{1}{2} f_1 + x_3 f_2 + x_4 f_2 + x_5 \overline{0}$
= $\frac{x_1}{2} (1, 0, 0) + \frac{x_2}{2} (1, 0, 0) + x_3 (0, 1, 0) + x_4 (0, 1, 0) + x_5 (0, 0, 0)$
= $(\frac{x_1 + x_2}{2}, x_3 + x_4, 0)$

The associated homogeneous equation is:

$$T(x_1, x_2, x_3, x_4, x_5) = 0$$

$$(\frac{x_1 + x_2}{2}, x_3 + x_4, 0) = (0, 0, 0)$$

$$\frac{x_1 + x_2}{2} = 0, \quad x_3 + x_4 = 0$$

we get, $x_2 = -x_1, x_3 = -x_4$

Thus, the kernel of T is the set of all vectors of the form $(x_1, -x_1, x_3, -x_3, x_5)$

i.e. $x_1(1, -1, 0, -, 0) + x_3(0, 0, 1, -1, 0) + x_5(0, 0, 0, 0, 1)$. Hence

$$N(T) = [(1, -1, 0, 0, 0), (0, 0, 1, -1, 0), (0, 0, 0, 0, 1)]$$

One particular solution of T(u) = (1, 1, 0) is $u_0 = (2, 0, 1, 0, 0)$, which is obtained by putting $x_1 = 2, x_2 = 0, x_3 = 1, x_4 = 0, x_5 = 0$. So the complete solution of the equation

$$T(u) = (1, 1, 0)$$

is the linear variety (2,0,1,0,0) + N(T), i.e. the set

$$(2,0,1,0,0) + \{(a,-a,b,-b,c)/a,b,c \text{ are real numbers }\}$$

4 Annihilators:

Definition 4.1 Let V be a real vector space and S be a non-empty subset of a vector space V, then the set $\{f \in V^*/f(x) = 0, \forall x \in S\}$ is called an annihilators of a set S and it is denoted by S^0 .

$$S^{0} = \{ f \in V^{*} / f(x) = 0, \forall x \in S \}$$

Theorem 7 Let S be a non-empty subset of a vector space V, then prove that S^0 is a subspace of V^* .

Proof: Here S is a non-empty subset of a vector space V. let V be a real vector space and V^* be a dual space of a vector space V.

$$S^{0} = \{f \in V^{*}/f(x) = 0, \forall x \in S\}$$
$$\overline{0}(x) = 0, \forall x \in S$$
$$\overline{0} \in S^{0}$$
$$S^{0} \neq \phi$$

(i) Let $f_1, f_2 \in S^0$, we have to prove that $f_1 + f_2 \in S^0$ Here $f_1, f_2 \in S^0$ So $f_1(x) = 0, f_2(x) = 0, \forall x \in S$

$$(f_1 + f_2)(x) = f_1(x) + f_2(x)$$

= 0 + 0
= 0
 $f_1 + f_2 \in S^0$

(ii) Let α be a scalar and let $f \in S^0$ then to prove that $\alpha f \in S^0$. Here $f \in S^0$ so f(x) = 0, $\forall x \in S$

$$((\alpha f)(x) = \alpha f(x)$$
$$= \alpha 0$$
$$= 0$$
$$\alpha f \in S^{0}$$

So from (i) and (ii) S^0 is a subspace of dual space of V^* .

Note: If $S = \overline{0}$ then $S^0 = V^*$.

5 Bilinear form

Definition 5.1 Let V be a real vector space, a bilinear form $f : V \times V \to \mathbb{R}$ is a function of two variables such that,

 $\forall x, y, z \in V \text{ and } \alpha, \beta \in \mathbb{R}$

- 1. $f(\alpha x + \beta y, z) = \alpha f(x, z) + \beta f(y, z)$
- 2. $f(x, \alpha y + \beta z) = \alpha f(x, y) + \beta f(x, z)$

Example 6 If $x = (x_1, x_2), y = (y_1, y_2) \in \mathbb{R}^2$ and $f(x, y) = x_1y_2 - x_2y_1$ then prove that f is a bilinear form.

Solution: Here \mathbb{R}^2 is a vector space.

Here $x = (x_1, x_2), y = (y_1, y_2) \in \mathbb{R}^2$ and function $f : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ defined by

$$f(x,y) = x_1 y_2 - x_2 y_1$$

we have to prove f is a bilinear form.

(i) Take $x = (x_1, x_2), y = (y_1, y_2), z = (z_1, z_2) \in \mathbb{R}^2$ and $\alpha, \beta \in \mathbb{R}$ we have to prove $f(\alpha x + \beta y, z) = \alpha f(x, z) + \beta f(y, z)$

$$f(\alpha x + \beta y, z) = f(\alpha(x_1, x_2) + \beta(y_1, y_2), (z_1, z_2))$$

= $f((\alpha x_1 + \beta y_1, \alpha x_2 + \beta y_2), (z_1, z_2))$
= $(\alpha x_1 + \beta y_1)z_2 - (\alpha x_2 + \beta y_2)z_1$
= $\alpha x_1 z_2 + \beta y_1 z_2 - \alpha x_2 z_1 - \beta y_2 z_1$
= $\alpha(x_1 z_2 - x_2 z_1) + \beta(y_1 z_2 - y_2 z_1)$
= $\alpha f(x, z) + \beta f(y, z)$

(ii) Take $x = (x_1, x_2), y = (y_1, y_2), z = (z_1, z_2) \in \mathbb{R}^2$ and $\alpha, \beta \in \mathbb{R}$ we have to prove $f(x, \alpha y + \beta z) = \alpha f(x, y) + \beta f(x, z)$

$$f(x, \alpha y + \beta z) = f((x_1, x_2), \alpha(y_1, y_2) + \beta(z_1, z_2))$$

= $f((x_1, x_2), (\alpha y_1 + \beta z_1, \alpha y_2 + \beta z_2))$
= $x_1(\alpha y_2 + \beta z_2) - x_2(\alpha y_1 + \beta z_1)$
= $\alpha x_1 y_2 + \beta x_1 z_2 - \alpha x_2 y_1 - \beta x_2 z_1$
= $\alpha(x_1 y_2 - x_2 y_1) + \beta(x_1 z_2 - x_2 z_1)$
= $\alpha f(x, y) + \beta f(x, z)$

From (i) and (ii) f is a bilinear form.

6 Exercises:

- 1. Find the dual basis corresponding to a basis $B = \{(1, -1, 1), (1, 1, -1), (-1, 1, 1)\}$ of \mathbb{R}^3 .
- 2. Find the dual basis corresponding to a basis $B = \{(1, -2, 1), (-2, 0, 1), (0, 0, 1)\}$ of \mathbb{R}^3
- 3. $T : \mathbb{R}^3 \to \mathbb{R}^2$ defined by $T(x_1 \cdot x_2, x_3) = (x_1 + x_2, x_1 x_3)$, then solve the operator equation $T(x_1 \cdot x_2, x_3) = (6, 3)$.
- 4. If $x = (x_1, x_2, x_3) \in \mathbb{R}^3$, $y = (y_1, y_2, y_3) \in \mathbb{R}^3$ and $f(x, y) = x_1y_2 3x_2y_3 + x_3y_1$, then prove that f is bilinear form.
- 5. If $x = (x_1, x_2), y = (y_1, y_2) \in \mathbb{R}^2$ and $f(x, y) = (x_1 y_1)^2 + x_2 y_2$. Is f is bilinear form on \mathbb{R}^2 .