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Unit-I: Composition of Linear Maps,The Space L(U, V'),The Operator Equation,Linear
Functional,Dual Space,Dual of Dual,Dual Basis Existence Theorem,Annihilators,
bilinear forms.

1 Linear Transformation

Definition 1.1 Let U and V' are two vector space then a mapping T' : U — V is called a Linear
Transformation if it satisfies the following condition:

1LY z,yelU T@+y) =T +Ty)
2.V 7zelU aeR, T(az) =aT(7)

Definition 1.2 Let T : U — V and S : U — V be two Linear Transformation then the sum of T
and S is denoted by T' + S and definedas T+ S :U — 'V

(T+8)(z)=T@)+S(x), VT eU
Example1 7:R?> - R3 T(7) = (z +y,2 — y,0), S: R* - R3 S(T) = (z — y,z + v, 27),
then find (T + 9).
Solution:
(T+8)(x)=T(z)+ S(T)

=@ +y,r—y0)+(r—-yz+y,2)

=@x+y+zr—y,x—y+az+y,0+22)

= (2z, 2z, 2x)

Definition 1.3 Let T' : U — V be a Linear Transformation and let o be a scalar then the scalar
multiplication of a linear transformation T' by « denoted by o/T' and defined as o' : U — V

(aT)(ZT) =aT(z), VT €U
Definition 1.4 The set f all Linear Transformation from U to V' is denoted by L(U,V').
LU, V) =A{T/T : U — V is a linear trans formation}

Definition 1.5 Let T' : U — V be a linear transformation and let S : V. — W be a linear
transformation then, the composition of S and T’ is denoted by SoT and defined as SoT : U — W.

SoT(z) = S(T(7)), VT €U

Theorem 1 Prove that the sum of two linear transformation is also linear transformation.

OR
If T,S € L(U,V) then prove that S +T € L(U,V).

Proof: Here T,S € L(U,V)ie T :U — Vand S : U — V are linear transformation.And we
have to prove S + T : U — V is also linear transformation.



(i) Let T,y € U to prove that (S +T)(T+75) = (S+T)(T)+ (S+T)(¥)
S+T)z+y9)=ST+y) +T(T+7) (. By Definition(1.2))
=@ +Sw)+ T @) +T{@) (. S,Tarel.T.)
= 5@ +T@)+5@H)+T{)
=(S+T)(T)+ (S+T)(7) (.- By Definition(1.2))

(ii) Let o € R and let € U to prove that (S + T)(aT) = (S + T)(T).

(S+T)(azx) = S(ax) + T(ax) (. By Definition(1.2))
= aS(z) + aT'(7) (. S, T areL.T.)
= a(5(7) + T(7))
=a(S+T)(Z)

So from (i) and (ii) S +T : U — V is also linear transformation.

Theorem 2 IfT € L(U,V) and o € R then prove that oT € L(U, V). Proof: Here T : U — V
is a linear transformation and o be a scalar to prove that o1 : U — V' is linear transformation.

(i) Let x,y € U to prove that (oT)(T +7) = (aT)(Z) + («T)(¥)

+7)) (. By Definition(1.3))
)+ T(7)) (- Tis LT,

(ii) Let x € U and let  be a scalar 5 € R to prove that (aT)(z) = B((aT)(T))

(aT)(BT) = o(T(5(7))) (- By Definition(1.3))
= a(B(T(7))) (o Tis L.T.)
= (aB)T(7)
= (Ba)T(7)
= B((aT)(7)) (. By Definition(1.3))

From (i) and (ii) &T : U — V is a linear transformation.

Theorem 3 The composition of two linear transformation is also a linear transformation.

OR
IfT € L(U,V)and S € L(V,W),then prove that SoT € L(V,W).
Proof: Here T € L(U,V),soT : U — V is a linear transformation and S € L(V,W) so

S 'V — W is a linear transformation.
And we have to prove that SoT : U — W is also linear transformation.



(i) Let T,y € U to prove that (SoT)(T +7) = (SoT)(Z) + (SoT)(y).

(SoT)(ZT+7)=S(T(T+7)) (. By Definition(1.5))
=S(T(@)+T{)) (-Tis L.T.)
=S(T(Z))+ S(T(y)) (.- Sis L.T.)
= (SoT')(Z) + (SoT)(7) (. By Definition(1.5))

(ii) Let T € U and let a be a scalar to prove that (SoT)(aZ) = a((SoT)(T)).
(SoT)(Oé_) = S(T(ax))

S(aT (7))

= a(5(T'(7)))

a((SoT)(7))

(. By Definition(1.5))
(- Tis L.T.)
(- Sis L.T.)
(. By Definition(1.5))

So from (i) and (ii) SoT : U — W is a linear transformation.

Example 2 Let T : R?* - R? T(x,y) = (r —y,z +y), S: R? 5 R?, S(z,y) = (x + y, 7 — y)
then find SoT and ToS.

Solution: Let (z,y) € R?

(SoT')(z,y) = S(T(z,y))
=Sz —y,z+vy)
=@-y+r+yr—y—a—y)
= (2z, —2y)

(ToS)(z,y) =T(S(z,y))
=T(x+y,z—y)
=x4+y—zrz+yx+y+xr—y)
= (2y, 22)

2 Linear functional and Dual Space

Definition 2.1 Let V' be a real vector space then a mapping f : V — R is said be a linear
functional if it satisfies the following conditions:

L flx+y)=f(x)+ fly), VzyeV
2. flax) = af(x), VaoeV anda eR
Note: The set of all linear functional from V' to R is denoted by L(V,R) or V*.
L(V,R)=V*={f/f:V = Risalinear functional}

Definition 2.2 Let V'* be the set of all linear functional from V' to R,where V' is a vector space.
for f,g € V*and o € R,

L (f+9)(@) = f(z) +g(x), YaeV
2. (af)(z) =a(f(z)) VzeV, aecR

under this operation V* is a vector space and this vector space V* is called a Dual space of a
vector space V.



Theorem 4 State and Prove Dual Basis existence theorem.
Statement: Let B = {vy, v, ..., v,} be a basis for a vector space V.let V* be a dual space of V,
suppose fi, fo, ... fn € V* such that

filv;) =1 i=]
—0  i#j i,j=12...n

Then prove that B* = {fi, fa, ... fn} is a basis for V*.
Proof: Here B = {vy, v, ...,v,} be a basis for a vector space V and V* be a dual space of V,
and fi, fo, ... fn € V* such that

filv;) =1 i=]
—0  i#j ij=12..n (1)

we have tp prove B* = { f1, fa, ... fu} is a basis for V*.

(i) First we shall prove that B* is Linearly Independent

Consider,

arfi+asfo+...+a,fn=0 where a; eR, 1=1,2,... n.
(afi+aofo+ ...+ anfn)(vr) =0
(@ fu)(01) + (@sfa)(0r) + - + (A fo) (01) = 0
ar(fi)(v1) + aa(f2) (1) + ... + an(fo)(v1) =0 (. By Definition(1.3))
a1(1) +az(0) + ...+ a,(0) =0 (By FEquation (1))
)=0
0

Similarly, we can prove ay = 0,03 =0,...,a, = 0.
so B* ={f1, fa,... [n} is Linearly Independent.

(ii) Now we have to prove that [B*| = V*.

we know that [B*] C V*.
so only to prove V* C |B*|
take f € V*, so f:V — Ris a linear functional.
Suppose,

fon) = ap, where o; €R, i=1,2,... ,n.
Let us define a function ¢ : V' — R such that

¢:a1f1+a2f2+---+anfn (2)



Now,

d(v1) = (a1 fi +aofo+ ...+ anfpn)(v1)
= (arfi)(v1) + (@afo)(v1) + ... + (anfu)(v1)

= a1 (f1)(v1) + az(fo) (V1) + ... + an(fu)(01) (" By Definition(1.3))

= a1(1) + a2(0) + ... + a,(0) (By FEquation (1))
p(v1) =
Similarly, we can prove
$(v2) = az
P(v3) = a3
Qb(vn) = Oy
So, ¢(v;) = «a;, wherei=1,2,...
also here
fvg) = o
o(vi) = f(vi)
o=1f

so by equation (2)
f=afitafot+...+anfn
felB]
50,
(B =V~
so from (i) and (ii) B* = {f1, fa, ... fn} is a basis for V*.

Example 3 Find the dual basis corresponding to a basis {(2,1),(3,1)} of R
Solution: Here R? is a vector space

codimR? =2

Let (R?)* be a dual space of R>.

s dim(R?)* =2

Also here B = {(2,1),(3,1)} is a basis for R*.
let vy = (2,1) and vy = (3,1)

to find B* = {f1, f>} a dual basis for R
Define function f; : R? — R such that

fi(z,y) = ax + by, a,beR

Definition 2.3 Let V' be a vector space and V* be a dual space of a vector space V.Let dimV = n
then dim V* = nand basis B* = { f1, fa2, ... fa} of V* corresponding to a basis B = {vy, v, . ..
of a vector space V' is called a dual basis for a vector space V.

,Un}



filz,y) = ax + by
fi(v1) = az + by
£i(2,1) =2a+b
1=2a+0
2a+ b=
filz,y) = ax + by
fi(v2) = az + by
fi(3,1) =3a+10
0=3a+0b
3a+b=0

Solve equation (3) and (4) we get a = —1.
Substitute a = —1 in equation (3) we get b = 3.
So,we get

fl(xa y) =—T+ 3y
Now, we define function fo : R? — R such that

folz,y) =cx+dy, c,de€R

fo(z,y) = cx + dy

£2(2,1) = 2c +d
0=2c+d
2c+d =
fo(z,y) = cx +dy
fa(ve) = cx + dy
f2(3,1) =3c+d
1=3c+d
Jc+d=

Solve equation (5) and (6) we get c = 1.
Substitute ¢ = 1 in equation (5) we get d = —2.
So,we get

fa(w,y) =2 =2y

Thus B* = {f1, f>} is a dual basis for R? .
where,
filz,y) = —x+3y

fa(w,y) = o =2y

3)

“)

&)

(6)



Example 4 Find the dual basis corresponding to a basis {(1,0,1),(1,1,0),(0,1,1)} of R3.
Solution: Here R? is a vector space

. dimR3? =3

Let (R®)* be a dual space of R>.

o odim(R%)* =3

Also here B = {(1,0,1),(1,1,0),(0,1,1)} is a basis for R>.

letvy =(1,0,1), vo = (1,1,0) and v3 = (0,1, 1)

to find B* = { f1, f2, f3} a dual basis for R

Letv; = (1,0,1),v2 = (1,1,0) and v3 = (0,1,1)

to find B* = {f1, f2, f3} a dual basis for R3.

Define function f; : R? — R such that

filz,y,z) =ax +by+cz, a,bjceR

filz,y,z) =ax + by + cz
fi(v1) = ax + by + cz

(1 0, 1)—a+c
l=a+c¢
a+c=1 @)

filz,y,2) = ax + by + cz
fi(v2) = ax + by + cz

fi(1,1,0) =a+b
0=a+D
a+b=0
a=—b )

filz,y,2) = ax + by + cz
fi(vs) = ax + by + cz

f1(0,1,1) =b+c¢
0=b+c
b+c=0 )
from equation (8) a = —0b in equation (7) we get
b—c=-1 (10)

solve equation (9) and (10) we get b = _7
-1 1
Substitute b = > in equation (8) we get a = 3

from equation (9) we get c = —

5
Thus we get,
1 1 1
fl(x,y,z) = 5%’ - §y+ 52
1
fl(«r,y,z) - 5(‘7: - y+Z)



Similarly we define function fo : R® — R such that

fo(x,y,z) =ax +by+cz, a,bjceR

folz,y,2) = ax + by + cz
fo(v1) = ax + by + cz

f2(1,0,1) =a+c
O=a+c
at+c=0
a=—c
folz,y,2) = ax + by + cz
fa(ve) = azx + by + cz
f2<1,1,0) :CL+b
l=a+b
at+b=1
folz,y,2) = ax + by + cz
fa(vs) = ax + by + cz
f2(0,1,1) =b+c
=b+c
b+c=0
from equation (11) a = —c in equation (12) we get
b—c=
1
solve equation (13) and (14) we get b = X
1 _
Substitute b = 3 in equation (14) we get c = >
from equation (11) we get a = 3
Thus we get,
1 1 1
fQ(x,y,Z) = 51‘—}- Ey - 52
1
f2('r7y72) = 5(.1’4-3/ - Z)

Now we define function f5 : R — R such that

fs(z,y,2) = ar + by +cz, a,b,ceR

fs(z,y,2) = ax + by + cz
f3(v1) = ax + by + cz

f3(1,0,1) =a+c
O=a+c
a+c=0
a=—c

(11)

(12)

(13)

(14)

(15)



fs(z,y,2) = ax + by + cz
f3(v2) = ax + by + cz

f3(1,1,0) =a+b
O0=a-+b
a+b=0 (16)

fs(z,y,2) = ax + by + cz
f3(v3) = ax + by + cz

f3(0,1,1)=b+c
l=b+c
b+c=1 (17)
from equation (15) a = —c in equation (16) we get
b—c=0 (18)
: 1
solve equation (17) and (18) we get b = X
1
Substitute b = 3 in equation (17) we get c
-1
from equation (15) we get a = -
Thus we get,
—1 1 1
fa(z,y,2) = 5 + 5Y + 2%
1
fS(xvyaz) = 5(_1' +y+ Z)

Thus B* = {f1, f2, f3} is a dual basis for R3 .

where,

filz,y, 2) = %(x —y+2)
Fol,,2) = 5w +y —2)

1
S(—a+y+2)

f3<x7y72) = 9

Theorem 5 Let {vy,vs,...,v,} be a basis for V and { f1, fa, ..., fn} be a basis for V* then
prove that for any v € V

v = 0o+ Fo©)en ot fu0)0n
and forany f € V*

f=f)fi+ fo)fot ...+ fvn)fu

Proof: Here B = {vy,vs,...,v,} is a basis of a vector basis for V and B* = {f1, fo,. .., [n}
be a basis for V*

.. B is linearly independent and |[B] =V and
B* is linearly independent and |[B*] = V*



(i) Let

veV
veV =|[B|
v € [B]
v=aqv1 + oty + ...+ v, Yoy, €R) 1=1,2,...n (19)
f1 (U) = f1 (0411}1 + (05X + ...+ OénUU>
= filaavr) + fi(ogva) + ... + fi(onwy)
= ai(fi(v)) + Ozz(fl(vQ)) -+ o (fi(vn))
= ai1(1) + a2(0) + .+an(0)
fl(U) = Qi
Similarly we can prove that,
f2(v) = g
f3(v) = a3
fln(v) = Qp
Substitute this values in equation (19) we get,
0= A+ B+ fal0)vn
(ii) Let
fev:
fevi=[B"
fe[B]
f=afitasfo...+anfn, YV, €R, i1=1,2,...n (20)
f(o1) = (aufi +aafe. ..+ anfn)(vr1)
= (arfi)(v1) + (a2f2)(v1) + ... + (o fo) (V1)
= a1(fi(v1)) + a2(f2(v1)) + ... + a(fu(vr))
=ai(l) + as(0) + ... + a,(0)
fo1) =a
Similarly we can prove that,
f(v2) = a
f(v3) = as
flon) = ay
Substitute this values in equation (20) we get,
f=Fflo)fi+ floa)fa+ .o+ flon) fu

10



3 Operator Equations
Definition 3.1 Let T' : U — V be a linear map and the solution of the equation
T(ug) = vy where vy is a fixed vector in V, (21)
then the equation (21) is called an Operator Equation.
Definition 3.2 If vy = Oy, then the set of solution of the equation
T(u) =0y (22)

Then equation (22) is called homogeneous (H) equation and solution of this equation is called

kernel of T
Definition 3.3 If vy # Oy then equation (21) is called non-homogeneous (NH) equation.

Theorem 6 Let T : U — V be a linear map.Given vy # Oy in V, the non-homogeneous equation
(NH) T(u) = v

and the associated homogeneous equation

have the following properties:

(a) If vy € R(T) and (H) has the trivial solution, namely u = Oy as its only solution, then (NH)
has a unique solution.

(b) If vo € R(T) and (H) has a nontrivial solution, namely a solution u # Oy, then (NH) has an
infinite number of solutions.In this case if ug is a solution of (NH) is the linear variety uy + K,
where K = N(T) is the set of all solutions of (H).

Proof: (a) If vy € R(T), then T'(u) = vq has a solution.
If T'(u) = Oy has only one solution u = 0.
Then N(T) = {0y}
so, T is one-one.
This means T'(u) = vy cannot more than one solution.
i.e. the solution of (NH) is unique.

(b) If T'(u) = Oy has a nonzero solution, then N(T) # {0y }.
Let ug € U be a solution of (NH). It exists because vy € R(T)) .
Then T(UQ) = 9.
Now if uy, € N(T), then

T(ug 4+ ug) = T(ug) + T(ux) (.0 T is linear)
= vp + Oy
= g
Therefore, ug + uy is a solution of (NH).

This is true for every uy € N(T'), and N (T') has infinite number of elements.
So, (NH) has infinite number of solutions.

11



From above discussion it is obvious that ug + K, where K = N(T'), is contained in the
solution set of (NH).
Conversely, if w be any other solution of (NH), then

T(w) =wvo =T (ug)
then

T(w) — T(up) = ?v

T(w — u,) = Oy
w—uy € N(T)=K
U)EUO+K

Thus, the solution set of (NH) is precisely uy + K.
Example 5 Let T : R> — R? be a linear map defined by
1 1 _
T(e) = §f1, T(e2) = §f1, T(e3) = fo, T(es) = f2, T(es)=0.
where {e1, e, €3, €4, €5} is the standard basis for R® and { f1, f, f3} is the standard
basis for R3.Then solve the equation
T(u) =(1,1,0)
Solution: First we calculate the value of T'(x1, xo, X3, T4, T5) :

T(l’l, Lo, T3,Ly, 1'5) = xlT(el) + £L‘2T(€2) + {E3T(63) + ZE4T(€4) + I5T(65)

1 1 _
= $1§f1 + 1172§f1 + x3fo + x4 fo + 250

X1

1,0,0
2(77)+

T+ T

= (75

The associated homogeneous equation is:

X2
2
y L3 + X4, 0)

(17 07 O) + 3:3(07 17 0) + :U4(07 17 0) + .%5(0, 07 O)

T(xly X2, T3, Ty, 'IS) = 6

r|+x
( 12 2,x3+x4,0)=(0,0,0)
x1+x2207 r3+x4=0
2
we get, To = —T1,T3 = —T4

Thus, the kernel of T is the set of all vectors of the form (x1, —x1, x3, —x3, Ts)
ie x1(1,—-1,0,—,0) 4+ 23(0,0,1,—1,0) 4+ 25(0,0,0,0, 1). Hence

N(T) =1(1,-1,0,0,0),(0,0,1,—1,0),(0,0,0,0,1)]

One particular solution of T'(u) = (1,1,0) is up = (2,0, 1,0,0), which is obtained by
putting v1 = 2,19 = 0,23 = 1,24 = 0,25 = 0.
So the complete solution of the equation

T(u)=(1,1,0)
is the linear variety (2,0,1,0,0) + N(T), i.e. the set
(2,0,1,0,0) + {(a, —a, b, —b,c)/a,b, c are real numbers }

12



4 Annihilators:

Definition 4.1 Let V be a real vector space and S be a non-empty subset of a vector space V', then
the set {f € V*/f(x) =0, V x € S} is called an annihilators of a set S and it is denoted by S°.

SO={feV*/f(x)=0,VzecS}

Theorem 7 Let S be a non-empty subset of a vector space V, then prove that S° is a subspace
of V*.

Proof: Here S is a non-empty subset of a vector space V.
let V' be a real vector space and V* be a dual space of a vector space V.
SO={feV*/f(x)=0,VaxeS}
0(z)=0, Vz eS8
0es®
S # ¢
(i) Let f1, f € S°,we have to prove that f + f, € S°

Here fi, fo € S°
So fi(z) =0, fo(z) =0, Vo €S

(fi+ f2)(z) = fi(z) + fo(z)
=0+0
=0
fit f2€5°

(ii) Let o be a scalar and let f € S° then to prove that of € S°.
Here f € S°so f(z) =0, Yz el

((af)(z) = af(z)
= al
=0

af € §°

So from (i) and (ii) S° is a subspace of dual space of V'*.

Note: If S = 0 then S° = V*.

5 Bilinear form

Definition 5.1 Let V be a real vector space, a bilinear form f : V x V — R is a function of two
variables such that,
Va,yz€V and o, € R

L. flax+ Py, 2) = af(z,2) + Bf(y, 2)
2. flw oy + B2) = af (z,y) + Bf(z,2)

13



Example 6 If v = (v1,72),y = (y1,%2) € R? and f(x,y) = x1y2 — T2y, then prove that f is a
bilinear form.

Solution: Here R? is a vector space.
Here x = (11, 22),y = (y1,y2) € R? and function f : R? x R?* — R defined by

f(x,y) = 2192 — T2
we have to prove f is a bilinear form.

(i) Take v = (x1,22),y = (y1,42),2 = (21,22) E R*and o, B € R
we have to prove f(ax + Py, z) = af(x,z) + B f(y, 2)

flax + By, 2) = fla(zr, 22) + B(y1, y2), (21, 22))

= f((axy + By1, axy + Bya), (21, 22))
= (axy + By1)z2 — (axs + Bya) 21
= ax122 + fy122 — araz — Byaz
= (2129 — X221) + B(y122 — Y221)
=af(z,2)+Bf(y,2)

(ii) Take v = (x1,%2),y = (y1,v2), 2 = (21,22) € R?and o, B € R

we have to prove f(x,ay + z) = af(x,y) + Sf(z, 2)

f(z, 0y + Bz) = f((z1,22), a(y1, y2) + B(z1, 22))
= f((z1,72), (ay1 + Bz1, ays + B22))
= r1(ays + B2z2) — xa(ays + B21)
= ar1ys + Br122 — axays — BTaz
= a(r1y2 — woy1) + B(T122 — T221)

= af(z,y) + Bf(x, 2)

From (i) and (ii) f is a bilinear form.

6 Exercises:
1. Find the dual basis corresponding to a basis B = {(1,—1,1), (1,1, —1),(=1,1,1)} of R3.
2. Find the dual basis corresponding to a basis B = {(1,—2,1),(-2,0,1),(0,0,1)} of R?

3. T : R?® — R? defined by T (.79, x3) = (21 + 2, 1 — 3), then solve the operator equation
T(xy.29,x3) = (6,3).

4. If x = (21, 22,23) € R3y = (y1,92,93) € R? and f(z,y) = 21y — 3w2y3 + 23Y1, then
prove that f is bilinear form.

5.z = (z1,72),y = (y1,92) € R*and f(x,y) = (1 — y1)*> + ays. Is [ is bilinear form on
R2.
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