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Unit-I

Unit-I:Some Preliminary Consideration: Well-Ordering Principle, Mathematical Induction, the
Binomial Theorem & binomial coefficients.
Divisibility Theory: the division algorithm, divisor, remainder, prime, relatively prime, the
greatest common divisor, the Euclidean algorithm (Without proof), the least common
multiple, the linear Diophantine equation & its solution.

1 Some Preliminary Consideration

Well-Ordering Principle :- Every non-empty set .S of non-negative integers contains a least ele-
ment; That is there is some integer a in S such that a < b for all b belonging to .S.

Theorem 1 State and Prove First Principal of Mathematical Induction
Statement :- Let S be a set of positive integers with the following properties:

(a) The integer I belongs to S.
(b) Whenever the integer k in S, the next integer k + 1 must also be in S.
Then S is the set of all positive integers.

Proof:- Let'T be the set of all positive integers not in S, and assume that T is non-empty.
The Well-Ordering Principle tells us that T" possesses a least element, which we
denote by a.
Because 1 isin S, certainly a > 1, and so0 < a — 1 < a.
The choice of a is the smallest positive integer in I’ implies that a — 1 is not a member of
T, or equivalently that a — 1 belongs to S.
By hypothesis, S must also contain (a — 1) + 1 = a, which contradicts the fact that a lies
inT.
We conclude that the set T is empty and in consequence that S contains all the positive
integers.

Example 1 Prove That
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Solution:- Here we use principle of Mathematical induction to establish the formula.
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First we check forn =1

LHS =p(1)=1*=
RHS — n(n + 1)6(2n + 1)
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so, equation (1) is true forn = 1
Now. we check forn = 2

LHS =p(1)=1*+2*=5
n(n+1)(2n + 1)

R.H.S. = ;
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so, equation (1) is true for n = 2
Now, suppose equation (1) is true for n = k where k € N.

plk) : 1P +22+ 3%+ ... + k% =

k(k+1)(2k+1)
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and we have to show that equation (1) is true forn = k + 1.
To obtain that sum of the first k + 1 squares we add the next one (k + 1)? to both side

of equation (2).
This gives

PP4+22 432+ 4+ +(k+1)
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12+22+32+...+k2+(l~c+1)2=(k+1)[(k+2>(2k+3)]

_ [(k+ Dk+1)+1)(2(k+1)+ 1)]

6

So, the equation is true forn = k + 1
p(k) is true = p(k + 1) is true.
By principle of mathematical induction our result is true for V n € N.

Hence,
12 +22+ 32 + +n2=n(n+1)(2n+1)
G

Theorem 2 State and Prove Binomial Theorem
Statement:-

n _ n n n n—1 n n—212 n n—1 n n
(a+b) (O)a +(1>a b+<2)a b+...+(n_1)ab +<n>b

Proof:- We use the principle of mathematical induction to establish this formula

(a+b)" = (g) a" + (?) a™ b+ (Z) a" b 4.+ (n ﬁ 1) ab™ ! + <Z> vt (3)

First we check this formula is true for n = 1

L.HS. = (a+b)' = (a+b)

1 1
R.H.S. = <0> a' + <1> a'~'h!

= (a+0)

so result is true forn = 1
Now, suppose this equation (3) is true for n = m

(a+b)™ = (73) a™ + (nf) a™ b+ <Tg) a7+ L+ (mnz 1) ab™ !+ <Z) b (4)

we have to prove that equation (3) is true forn = m + 1
multiply both side of equation (4) by (a + b)

m _ m m m m—1 m m—212 m m—1 m m
(a+ ) (a+b)—[(0>a —|—(1)a b+<2)a b+...+<m_1)ab +<m)b](a+b)
(™ a™tt 4 m a™b + mn a4+ m a?pmt 4 mn ab™+
0 1 2 m—1 m
m m m mi2 m m—113 m 21m m m+1
<O)a b+(1>ab+<2)a b+...+<m_1>ab —|—<m>b
1
= mt a4 m a™b + mn a4 mn a’bm b 4+ mn ab™+
0 1 2 m—1 m
m m m mi2 m m—113 m 21m m+1 m-+1
(O)a b+(1>ab—l—<2)a b+...+<m_1)ab +(m—|—1)b

[ ) = G = 1.(5) = (") = 1]
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from Pascal’s Rule

+1 +1 +1 +1
@+t =" oy (7 R R R ab™+
0 1 2 m
m+ 1 bm+1
m+1
so, the formula is true forn = m + 1
By Principle of mathematical induction we establish binomial theorem

n n n n n
b n _ n n—lb n—2b2 o bn—l bn
(a+0b) (O)a +(1)a +<2)a + +(n_1)a +<n>
Example 2 Show that
V(M) (D) () =2
0 1 2) 7 \n)

Solution:- The Binomial theorem is

(a+b)" = (g) a" + (T) a™ b+ (Z’) a" b 4.+ (Z) b

Put a = b =1 in above equation
we get

(1+1)" = (g>(1>" + (T)(m—n + (Z)(l)"_le bt (Z)u)"
7 — (0) + (1) n (2) - ()

Example 3 Show that

n n n n
— — ... 1" =
Solution:- The Binomial theorem is

(a+b)" = (g) a" + (?) a™ b+ (Z) a" b 4.+ <Z> b

Put a = 1,b = —1 in above equation
we get



Example 4 Show that

()2 o)) -oe

Solution:- The Binomial theorem is

(a+b)" = (g) a” + (T) a™ b+ (Z) a" b 4.+ (Z) b

Puta = 1,n = n — 1 in above equation

1+b)" " = n-l 1"+ n—1 1"2h + n—1 17302+ .+ =1
0 1 2 n—1
n—1 n—1 n—1 n—1
= b b2+ ... prt
() O (0 e (00)

Now, multiplying both side above equation by n, we get

-1 -1 -1 -1
n(1+b)”_1=n(n0 )+n(n1 )b+n(n2 )b2+...+n<2_1)bn_1

Now, put b = 1, we get

nznlzn(”gl) +n(”;1)1+n<”;1)12+...+n(zj)1n1
n(ngl)Jrn(nIl)Jrn(n;l)Jr+n<Z:D
n(”;l) :(k+1)<k21)

n2”1=(0+1)<Oj_1)+(1+1)<1j_1)"’(24_1)(2?_1)+"'+<n_1+1)(n—711+1>

so, we get
n n n n
on—l — 2
v = (1) 2(3) +3(3) - ()

2 Divisibility Theory

Now,

Theorem 3 State and Prove Division Algorithm

Statement:- Given integer a and b, with b > O there exist unique integer q and r satisfying
a=qgb+r 0<r<b
The integers q and r are called respectively the quotient and reminder in the division
of a by b.
Proof:- Let S = {a — bx |x € Z,q — bx = 0}
i.e. S isa set of non-negative integers.

Now b>0=b>1
=|alb=|a| ®))



Taking x = — | a |€ Z
a—br=a—-b(—|al)
=a+|alb
>at|al (. by (5))
=0
“a—bresS
S S#D

Thus S is a non-empty set of non-negative integers.

". By well-ordering principle S contains a smallest integers say r,

ie. T€S .. q€Z such that

r=a—qb and 0<r

a=gb+r and 0<r

Now, we prove that r < b.
If possible suppose r < b.
Lor>b
r—b>0
Hence

a—blg+1)=a—bg—>b

= (a—bg) —b
=r—>
=0
Ta—blg+l)esS
“r—belS

Which is not possible because 7 is the smallest integer in S.

". our supposition v € b is wrong

Lr<b

So,from equation (6) and (7) we get

a=qb+r, 0<r<bd

Now, we prove that q and r are unique integer
If suppose not then
a=qb+r,

a=qb+1,

/

<r<bdb
<7r <

b
Sobg+r=0¢ + 1
Sobg—bg =1 =7
Lblg—q) =1 —r
Sblg=dq) =[]
Sollg—q" | =[r" =]
Soblg=d =" =r] (- b>0)

(6)

(7

®)



Now,

0<r<b and 0<7r <b

= —b<—1r<0 and 0<r' <b
Adding

= —b<r—r<b
= |r—r|<b
= blg—dq|<b (. by equation (8))
= |q—4q|<1
= |¢—q¢ <0
= la-dl=0 (o la-d1%0)
= q-q¢=0
= q=4

By equation (8) we get

| —r|=0
Tr—1r' =0
Tr=1

Hence q and r are unique integers.

Definition 2.1 An integer b is said to be divisible by an integer a # 0, if there exist some integer c
such that b = ac.And it is denoted by a | b.
we write a | b to indicate that b is not divisible by a.

Theorem 4 For Integers a, b, c the following hold:
(a) a0, 1|a, ala
(b) a | 1, ifand only ifa + 1
(c) Ifa | band c | dthen ac | bd
(d) Ifa | band b | cthena | ¢
(e) Ifa | band b | a if and only if a + b.
(f) Ifa | band b # 0, then | a |<| b |
(g) Ifa | bandIfa | c, then a | (bx + cy) for arbitrary integers x and y.

Proof:-
(a) By above definition (2.1) if a | b then there exist an integer c such that b = ac
Now,a | 0 =0 =ac take ¢ =0
Now,a |1 = a=1c take c=a
Now, a | a = a = ac take c =1

Therefore (a) is hold.



(b) By above definition (2.1) if a | b then there exist an integer c such that b = ac
(=) supposea | 1
= 1=ac
So, it is possible whena =1 & c¢=1
or a=-1 & c=-1
= a=*1
(<) conversely suppose a + 1
= a=1 or a=-1
1.1=1 and (-1)(-1)=1
=11 and = -1|1
=a|l and =a]l

Therefore (b) is hold.

(c) By above definition (2.1) if a | b then there exist an integer c such that b = ac
50,

a|b=b=ac; wherecyisan integer 9)

c|d=d=ccy; wherecyisan integer (10)
Now,equation (9) multiply with equation (10)

bd = (aCI)<CCQ>
= bd = (ac)(c1c2)
= bd = (ac)cg  (where c3 = c1c9, c3is an integer)

= ac | bd

Therefore (c) is hold.

(d) By above definition (2.1) if a | b then there exist an integer c such that b = ac
5o,

al|lb="b=ac where ¢y is an integer (11)
b|c=c=bc where ¢y is an integer (12)
= c=acicy (from equation (11) )
= Cc = acs where c3 = c1co 1S an integer

=alc
Therefore (d) is hold.

(e) By above definition (2.1) if a | b then there exist an integer ¢ such that b = ac
(=) so,

al|lb=0b=ac where ¢y 1s an integer (13)
b|a= a=bc where ¢y is an integer (14)
= a =acica  (from equation (13) )
= a = a(c1¢9)

= C1Co =1



It is possible only whenc; = 1 & co =1 or ¢ = —1& ¢ = —1

Ifei=c=1=a=0b (From equation (13))
Ifey=c=—-1=a=-b (From equation (14))
=a = tb
(<) conversely if a = +b thena =bora = —b

a=b=b=al=a|b

a=-b=a=b(-1)=0>b]a
Therefore (e) is hold.

(f) By above definition (2.1) if a | b then there exist an integer c such that b = ac
s0,

al|b=b=ac
=|b|=|ac| (taking modulas both sides)

=|b]=lallc|

sinceb#0=c#0
© ¢ # 0 it follows that

lc|>1
=lallcl=la]
=|b|>|al

= [al<|b]
Therefore (f) is hold.

(g) By above definition (2.1) if a | b then there exist an integer c such that b = ac
s0,

a|lb=b=ar (where r is an integer) (15)

alc=c=as (where s is an integer) (16)
But the choice of x and y is

br + cy = (ar)x + (as)y  (By equation (15) and (16) )
br + cy = a(rz + sy)
=a | (bxr + cy) (.0 (ra + sy) is an integer)

Therefore (g) is hold.



3 Greatest Common Divisor

Definition 3.1 Let a and b be given integers with at least one of them not zero,then Greatest com-
mon divisor of a and b, denoted by gcd(a, b) is the positive integer d satisfies the following:

(i) d | aandd | b
(ii) If ¢ | aand c | b, then ¢ < d.

Theorem 5 Prove that given integers a and b not both of zero, then there exist integers x and y
such that ged(a.b) = ax + by

Proof:- Consider the set S of all positive linear combination of a and b.
S = {au+bv | au+bv > 0,u,v e Z}

First we show S # ¢.

If a # 0, then the integer | a |= au + b0 lies in S, where we choose v = 1 or u = —1
according as a is positive or negative.
So, S # ¢

Now, we prove d = ged(a, b)

By, well-ordering principle S must contain a smallest element d

Now, by definition of S there exist integer x and y for which d = ax + by
then we have to prove that d | a and d | b.

If d | a then by Division Algorithm there exist integer q and r such that

a=dq+r, where 0<r<d
Now, d=ax+ by
= dq = aqx + bqy
= a—r =aqr+ bqy
= r=a—aqr — bqy
= r=a(l —qx)+ b(—qy)
=relS & r<d

which is contradiction as d is the smallest element of S.
so, d | a.

Similarly by above we can prove d | b.

so, d is common divisor of a and D.

Let c is an arbitrary positive common divisor of the integer a and b.
Thenc | aandc | b.

= c| (ax +by) (.0 fromtheorem 4(g))

= c|dand d#0

=|cl<|d| (. from theorem 4(f))

= c<d.

so, d is a greatest common divisor of a and b.

so, d = ged(a, b)
Theorem 6 If a and b are given integers not both zero then the set
T = {ax + by | x,y are integers}

is precisely the set of all multiples of d = ged(a, b)

10



Proof:- Here we have to prove
T = {ax + by | x,y are integers}
is the precisely of the multiple of nd.
Here d = ged(a,b) = d | aandd | b
= d | (ax + by) for all integers x,y.
Thus every member of T is a multiple of d.

Conversely d may be written as d = axq + by for suitable integers xq and vy
so, that any multiple nd of d is of the form
nd = n(axy + byp)
nd = a(nxy) + b(nyo)
Hence, nd is a linear combination of a and b.
so, ndeT.
Definition 3.2 Two integers a and b, not both of which are zero are said to be relatively prime
whenever ged(a,b) = 1

Theorem 7 Let a and b be integers not both zero.Then a and b are relatively prime if and only if
there exist integers x and y such that 1 = ax + by.

Proof:- If a and b are relatively prime so gcd(a,b) = 1, then by theorem(5) there exist integers
x and y satisfying 1 = ax + by

conversely suppose that 1 = ax + by for some choice of x and y.
Suppose that d = ged(a,b) = d | aandd | b

So, by theorem 4 (g), d | (ax +by)=d | 1

Now, d is a positive integer, so d = 1

".ged(a,b) =1

Thus, integers a and b are relatively prime.

b
Theorem 8 If gcd(a,b) = d then ged (%, 8) =1
Proof:- Here First we show 4 and — are integer

Here ged(a,b) = dthend | aand d | b.

d | a then there exist integer ny such that a = nid
a

L= = ni.

d | b then there exist integer nsy such that b = nyd

o= = No.

d
a b .
so, both — and p are integers.

Now, ged(a, b) = d then there exist integers x and y such that d = ax + by
Dividing both side by d, we get

b
Because (—) and (a) both are integer

a b
So,ged [ =, =] =1
o, gc (dd>

Ul e

11



Theorem 9 Ifa | candb | ¢, with ged(a,b) = 1 then ab | c.

Proof:- If a | c then there exist an integer such that r such that
c=ar (17)
If b | c then there exist an integer such that s such that
c=bs (18)
Now, ged(a, b) = 1 then there exist integer x and y such that
1 =ax+by (19)
Multiply equation (19) by c

= c=acxr + bcy
= c=a(bs)r +blar)y  (from equation (17) and (18))
= ¢ = ab(sz + ry)

sx 4+ 1y s an integer

Soab | e

Theorem 10 Srate and Prove Euclid’s Lemma
Statement:- If a | bc with ged(a,b) = 1, thena | ¢

Proof:- Here it is given that gcd(a, b) = 1, then there exist integers x and y such that

ged(a, b) = ax + by
1=azx+ by (20)

Multiply equation (20) by c
. ¢ =acx + bcy 2D

Now, a | bc and also a | ac
it follows that a | acx + bcy for any integers x and y

= alc (from eqution (21))

The Euclidean Algorithm:- For given integers a and b both not zero then find the ged(a, b) we
procedure the following system equations:

a=qb+nr O<ri<b

b:CIQT1+7"2 O<T2<T1

L = (@379 + 73 O<T’3<7"2
Tn—2 = qpTn—1 + Tn 0<rp <rnp1

Tn-1 = Gn+1Tn + 0

This division process continue until some zero remainder appears, say at the (n + 1) stage where
rn—1 1s divided by 7,
The last nonzero remainder 7, is equal to ged(a, b).

12



Example 5 Find gcd(12378,3054) and obtain integers x and y satisfy following:
ged(12378,3054) = 12378z + 3054y
Solution:- Here we use Euclidean Algorithm

12378 = 4(3054) + 162
3054 = 18(162) + 138
162 = 1(138) + 24

138 = 5(24) + 18
24 = 1(18 )
18 = 3(6) +

So, ged(12378,3054) = 6

To represent 6 as a linear combination of the integers 12378 and 3054 we start with
the next to last of the displayed and successively eliminate the remainders 18,24,138

and 162.
6 =24 —1(18) (from equation (26))
6 =24 —1(138 — 5(24)) (from equation (25))
6 = 6(24) — 1(138)
6 =6(162 —1(138)) — 1(138) (from equation (24))
6 = 6(162) — 7(138)
6 = 6(162) — 7(3054 — 18(162)) (from equation (23))

6 = 132(162) — 7(3054)
6 = 132(12378 — 4(3054)) — 7(3054)  (from equation (22))
6 = 12378(132) + 3054(—535)

And we have gcd(12378,3054) = 6
gcd(12378, 3054) = 12378(132) + 3054(—535)
So, x =132 and y = —535
Example 6 Find gcd(1106,497) and obtain integers x and y satisfy following:
ged(1106,497) = 11062 + 497y
Solution:- Here we use Euclidean Algorithm

1106 = 2(497) + 112
497 = 4(112) + 49
112 = 2(49) + 14

49 = 3(14 )
14 = 2(7) +

So, ged(1106,497) = 7

To represent 7 as a linear combination of the integers 1106 and 497 we start with the
next to last of the displayed and successively eliminate the remainders 14,49 and 112

13
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7=49 —3(14) (from equation (31))

7 =49 —3(112 — 2(49)) (from equation (30))
7 = 7(49) — 3(112)
7 ="7(497 — 4(112)) — 3(112) (from equation (29))

7 = 7(497) — 31(112)
7 =7(497) — 31(1106 — 2(197)) (from equation (28))
7 = 497(69) + 1106(—31)

And we have gcd(1106,497) = 7

ged(1106,497) = 1106(69) + 497(—31)
So, x =69 and y = —31

Definition 3.3 The least common multiple of two nonzero integers a and b denoted by lcm(a,b) is
the positive integer m satisfying the following:

(i) a | mandb | m
(ii) Ifa | cand b | c with ¢ > 0, thenm < c.
Theorem 11 For positive integers a and b then prove that
ged(a, b).lem(a,b) = ab

Proof:- We know that for any positive integer a and b, gcd(a,b) = d
This implies thatd | aand d | b
Ifd | a= a=dr; whererisan integer
Ifd | b= b=ds; wheresisan integer

ab
Ifm=—
T
Then,
~ (dr)b ~ (ds)a
m = y & m= y
=br & = as
=b|lm & al|lm

Which shows that m is a positive common multiple of a and b.

Now, let ¢ be any positive integer that is common multiple of a and b
=a|candb | c

= ¢ = au and ¢ = bv (where u and v are integers)

Also, we know that there exist integer x and y satisfying d = ax + by

Now,

c cd

m  ab
_ clax + by)
B ab

car  cby

T
@@
) a



=vxr +uy

m(ve + uy)

3 o 3o

It conclude that m < ¢

Thus by definition (3.3),

m = lem(a, b)

b
= % = lem(a, b)
ab
— =1 b
= acd(a D) em(a, b)

= ged(a, b).lem(a, b) = ab

4 Linear Diophantine Equation

Definition 4.1 The general form of a linear Diophantine equation in two unknown x and vy is
ar + by =c

where a,b and c are integers and a, b are not both zero.

Theorem 12 Prove that the linear Diophantine equation ax + by = c has a solution if and only if
d | ¢, where d = ged(a, )

Further, if x, yo is any particular solution of this equation then all other solutions are given by

b a
xr = X9+ (C_Z)t and Y = 1Yo + (a)t

Where, t is an arbitrary integer
Proof:-(=) Suppose that the equation ax + by = c has a solution say x, yo.
Joaxg+byg =c

Now, d = ged(a, b)
Sodla and d|b

S.a=dr and b=ds, wherer,seZ

Now,

c = axgy + by
¢ = (dr)xo + (ds)yo
¢ =d(rzo + syo)

=d | c
(<) conversely suppose d | ¢

C.e=dt whereteZ

15



Now, d = ged(a, b)

Sod = au + b, where u,v € 7
Codt = tau + thy

Codt = a(ut) + b(vt)

Codt = axg + byg

where xo = ut and 1y = vt is a particular solution of ax + by = ¢
.. the equation ax + by = c has a solution.

Further Proof:- Suppose xq,yo is any particular solution of the equation ax + by = c and x',y’

any other solution of ax + by = c.

Hence
arg+byy=c and azx' +by =c
= ax’ + by’ = azxg + byo
= azr’ — axg = byy — by’
= a(x’ —x9) = b(yo — V')
Now,
ged(a,b) =d
a b
Soged | == =1
i (G3)
Coged(r,s) =1

SIS

where r = g and s =
S.a=dr and b=ds
Putting these values of a and b in equation (33)
we get
dr(z' —xg) = ds(yo — )
Sor(d = xo) = s(yo — v)
=7 | s(yo—y)
But, ged(r,s) =1
Sorly—vy  (By Euclid's Lemma)
yo—1y =1t For some integer t
From equation (34) we get
r(z' —xg) = s(rt)
Soa —xg = st

S =xg + st

b

ol =g+ (a)t
From equation (35) we get
y/ = Yo — rt
a
Sy = — (=)t
v =y -(3)

16
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Hence for any integer t

ar’ + by’ =a lmo + (g)t] +b [yo - (g)t] (from equation (36) and (37))

b a
— azo + a(=)t + by — b(=)t
oy + o D)t -+ by — (%)
= axo + by
=c ("." mo,yo is a solution of the equation ax + by = c)

Hence all other solution are given by

b
r =z + (;l)t
a/ . .
Y =1y — (C_Z)t where t is an integer
Example 7 Find the General Solution of the linear Diophantine equation
1722 + 20y = 1000

Solution:- First we find gcd(172,20)

172 = 8(20) + 12 (38)
20 = 1(12) + 8 (39)
12 = 1(8) + 4 (40)

8=2(4)+0

Hence ged(172,20) = 4 and 4 | 1000
.". The Solution of the given equation exists.
Now,

4=12-1(8) (fron equation (40))

4=12-1(20 — 1(12) (fron equation (39))

4 =2(12) — 1(20)

4 =2(172 —8(20)) — 1(20)  (fron equation (38))

4 =2(172) — 17(20) (41)
Multiplying equation (41) by 250 we get

1000 = 172(500) + 20(—4250)

Thus one solution of the given Diophantine equation is given by

xo =500 & yo = —4250

Now, general solution of given Diophantine equation is given by

b
— ~t
X Zo + (d )
20
= 500 — )t
+(3)
x = 500 + 5t 42)
a
y=1y0—(51)
172
y = —4250 — 43t (43)
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Now from equation (42) we get

5t + 500 > 0
t > —100 (44)

And from equation (43) we get

—4250 — 43t > 0
—4250

43
—98.83 >t (45)

> 1

From equation (44) and (45) we get
—100 < t < —98.83

Thus we gett = —99
Putt = —99 in equation (42) and (43) we get unique positive solution of Diophantine
equationisx = 5andy =7

Example 8 A customer bought a dozen pieces of fruit, apples and oranges,for $1.32 = [132 cents].
If an apple 3 cents more than an orange and more apples then oranges were purchased, how many
pieces of each kind were bought?

Solution:- Suppose x is the number of apples purchased.
And vy is the number of oranges purchased

Loty =12 (46)

Suppose z is the cost of an orange in cent.
And z + 3 is the cost of an apple in cent.
..we get
(z+3)x+ 2y =132

Soze 43z + 2y = 132

Soz(r+y) 4+ 3 =132

So3r+ z(x +y) = 132

So3x + 122 = 132 (from equation (46))
Cox+ 4z =44 (47)

Now, ged(1,4) = 1 and 1 | 44 therefore the solution of this equation exists.
1=1(-3) +4(1)
Multiply above equation by (44) we get

44 = 1(—132) + 4(44)
" 1'02—132 & 2’0:44

This is one solution of the equation.
All the solution are of the form

x=—132+ 4t (48)
z=44+ (—1)t whereteZ (49)
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Now, apples are more than oranges
Therefore we get

x>y and
x+y=12
Sox =12 (. y=0) (50)
Now,
x>12—=x
S 2 > 12
) (51)

Now, from equation (50) and (51) we get,

6<z<12
S6< =132+ 4t <12 (from equation (48))

Co138 < 4t < 144

S.345 <t < 36
S.t=35andt = 36
Now, t = 35 and from equation (48) we get x = 8,y =4 and z = 9
Now, t = 36 and from equation (48) we get x = 12,y = 0 and z = 8
So, there are two possible purchase:

(i) 8 apples at 12 cents each and 4 apples at 9 cents each.
(ii) 12 apples at 11 cents each.

5 Exercises

1. By Principle of Mathematical induction Show that

14+2+4+22 4254+ . 42 t=9"_1

2. By Principle of Mathematical induction Show that

D(n+2
124234844 +n(mt1) = dntDo+2)

3. Find ged (726, 275) and obtain integers x and y satisfy following:
ged(726,275) = 726x + 275y

4. Find gcd (1769, 2378) and obtain integers = and y satisfy following:
ged(1769,2378) = 17692 + 2378y

5. Find (i) lem(306,257) and (ii) lem(272,1479)
6. Find General solution of the linear Diophantine equation

54x + 21y = 906

7. If a cook is worth 5 coins, a hen 3 coins and three chicks together 1 coin, how many
cocks,hens and chicks totaling 100, can be bought for 100 coins?
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