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Unit-I:Some Preliminary Consideration: Well-Ordering Principle, Mathematical Induction, the
Binomial Theorem & binomial coefficients.
Divisibility Theory: the division algorithm, divisor, remainder, prime, relatively prime, the
greatest common divisor, the Euclidean algorithm (Without proof), the least common
multiple, the linear Diophantine equation & its solution.

1 Some Preliminary Consideration
Well-Ordering Principle :- Every non-empty set S of non-negative integers contains a least ele-
ment; That is there is some integer a in S such that a ď b for all b belonging to S.

Theorem 1 State and Prove First Principal of Mathematical Induction
Statement :- Let S be a set of positive integers with the following properties:

(a) The integer 1 belongs to S.

(b) Whenever the integer k in S, the next integer k ` 1 must also be in S.

Then S is the set of all positive integers.

Proof:- Let T be the set of all positive integers not in S, and assume that T is non-empty.
The Well-Ordering Principle tells us that T possesses a least element, which we
denote by a.
Because 1 is in S, certainly a ą 1, and so 0 ă a´ 1 ă a.
The choice of a is the smallest positive integer in T implies that a´ 1 is not a member of
T , or equivalently that a´ 1 belongs to S.
By hypothesis, S must also contain pa´ 1q` 1 “ a, which contradicts the fact that a lies
in T .
We conclude that the set T is empty and in consequence that S contains all the positive
integers.

Example 1 Prove That

12
` 22

` 32
` . . .` n2

“
npn` 1qp2n` 1q

6

Solution:- Here we use principle of Mathematical induction to establish the formula.

ppnq : 12
` 22

` 32
` . . .` n2

“
npn` 1qp2n` 1q

6
(1)
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First we check for n “ 1

L.H.S. “ pp1q “ 12
“ 1

R.H.S. “
npn` 1qp2n` 1q

6

“
1p1` 1qp2p1q ` 1q

6

“
p1qp2qp3q

6

“
6

6
“ 1

6 L.H.S. “ R.H.S.

so, equation (1) is true for n “ 1
Now. we check for n “ 2

L.H.S. “ pp1q “ 12
` 22

“ 5

R.H.S. “
npn` 1qp2n` 1q

6

“
2p2` 1qp2p2q ` 1q

6

“
p2qp3qp5q

6

“
30

6
“ 5

6 L.H.S. “ R.H.S.

so, equation (1) is true for n “ 2
Now, suppose equation (1) is true for n “ k where k P N.

ppkq : 12
` 22

` 32
` . . .` k2 “

kpk ` 1qp2k ` 1q

6
(2)

and we have to show that equation (1) is true for n “ k ` 1.
To obtain that sum of the first k ` 1 squares we add the next one pk ` 1q2 to both side
of equation (2).
This gives

12
` 22

` 32
` . . .` k2 ` pk ` 1q2 “

kpk ` 1qp2k ` 1q

6
` pk ` 1q2

“ pk ` 1q

„

kp2k ` 1q

6
` pk ` 1q



“ pk ` 1q

„

kp2k ` 1q ` 6pk ` 1q

6



“ pk ` 1q

„

2k2 ` k ` 6k ` 6

6



“ pk ` 1q

„

2k2 ` 7k ` 6

6


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12
` 22

` 32
` . . .` k2 ` pk ` 1q2 “ pk ` 1q

„

pk ` 2qp2k ` 3q

6



“

„

pk ` 1qppk ` 1q ` 1qp2pk ` 1q ` 1q

6



So, the equation is true for n “ k ` 1
ppkq is trueñ ppk ` 1q is true.
By principle of mathematical induction our result is true for @ n P N.
Hence,

12
` 22

` 32
` . . .` n2

“
npn` 1qp2n` 1q

6

Theorem 2 State and Prove Binomial Theorem
Statement:-

pa` bqn “

ˆ

n

0

˙

an `

ˆ

n

1

˙

an´1b`

ˆ

n

2

˙

an´2b2 ` . . .`

ˆ

n

n´ 1

˙

abn´1 `

ˆ

n

n

˙

bn

Proof:- We use the principle of mathematical induction to establish this formula

pa` bqn “

ˆ

n

0

˙

an `

ˆ

n

1

˙

an´1b`

ˆ

n

2

˙

an´2b2 ` . . .`

ˆ

n

n´ 1

˙

abn´1 `

ˆ

n

n

˙

bn (3)

First we check this formula is true for n “ 1

L.H.S. “ pa` bq1 “ pa` bq

R.H.S. “

ˆ

1

0

˙

a1 `

ˆ

1

1

˙

a1´1b1

“ pa` bq

so result is true for n “ 1
Now, suppose this equation (3) is true for n “ m

pa` bqm “

ˆ

m

0

˙

am `

ˆ

m

1

˙

am´1b`

ˆ

m

2

˙

am´2b2 ` . . .`

ˆ

m

m´ 1

˙

abm´1 `

ˆ

m

m

˙

bm (4)

we have to prove that equation (3) is true for n “ m` 1
multiply both side of equation (4) by pa` bq

pa` bqmpa` bq “

„ˆ

m

0

˙

am `

ˆ

m

1

˙

am´1b`

ˆ

m

2

˙

am´2b2 ` . . .`

ˆ

m

m´ 1

˙

abm´1 `

ˆ

m

m

˙

bm


pa` bq

“

ˆ

m

0

˙

am`1 `

ˆ

m

1

˙

amb`

ˆ

m

2

˙

am´1b2 ` . . .`

ˆ

m

m´ 1

˙

a2bm´1 `

ˆ

m

m

˙

abm`

ˆ

m

0

˙

amb`

ˆ

m

1

˙

amb2 `

ˆ

m

2

˙

am´1b3 ` . . .`

ˆ

m

m´ 1

˙

a2bm `

ˆ

m

m

˙

bm`1

“

ˆ

m` 1

0

˙

am`1 `

ˆ

m

1

˙

amb`

ˆ

m

2

˙

am´1b2 ` . . .`

ˆ

m

m´ 1

˙

a2bm´1 `

ˆ

m

m

˙

abm`

ˆ

m

0

˙

amb`

ˆ

m

1

˙

amb2 `

ˆ

m

2

˙

am´1b3 ` . . .`

ˆ

m

m´ 1

˙

a2bm `

ˆ

m` 1

m` 1

˙

bm`1

“

7
`

m
m

˘

“
`

m`1
m`1

˘

“ 1,
`

m
0

˘

“
`

m`1
0

˘

“ 1
‰
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pa` bqm`1 “

ˆ

m` 1

0

˙

am`1 `

„ˆ

m

1

˙

`

ˆ

m

0

˙

amb`

„ˆ

m

2

˙

`

ˆ

m

1

˙

am´1b2`

„ˆ

m

3

˙

`

ˆ

m

2

˙

am´2b3 ` . . .`

„ˆ

m

m

˙

`

ˆ

m

m´ 1

˙

abm `

ˆ

m` 1

m` 1

˙

bm`1

from Pascal’s Rule
ˆ

n

k

˙

`

ˆ

n

k ´ 1

˙

“

ˆ

n` 1

k

˙

pa` bqm`1 “

ˆ

m` 1

0

˙

am`1 `

ˆ

m` 1

1

˙

amb`

ˆ

m` 1

2

˙

am´1b2 ` . . .`

ˆ

m` 1

m

˙

abm`

ˆ

m` 1

m` 1

˙

bm`1

so, the formula is true for n “ m` 1
By Principle of mathematical induction we establish binomial theorem

pa` bqn “

ˆ

n

0

˙

an `

ˆ

n

1

˙

an´1b`

ˆ

n

2

˙

an´2b2 ` . . .`

ˆ

n

n´ 1

˙

abn´1 `

ˆ

n

n

˙

bn

Example 2 Show that
ˆ

n

0

˙

`

ˆ

n

1

˙

`

ˆ

n

2

˙

` . . .`

ˆ

n

n

˙

“ 2n

Solution:- The Binomial theorem is

pa` bqn “

ˆ

n

0

˙

an `

ˆ

n

1

˙

an´1b`

ˆ

n

2

˙

an´2b2 ` . . .`

ˆ

n

n

˙

bn

Put a “ b “ 1 in above equation
we get

p1` 1qn “

ˆ

n

0

˙

p1qn `

ˆ

n

1

˙

p1qn´11`

ˆ

n

2

˙

p1qn´212
` . . .`

ˆ

n

n

˙

p1qn

2n
“

ˆ

n

0

˙

`

ˆ

n

1

˙

`

ˆ

n

2

˙

` . . .`

ˆ

n

n

˙

Example 3 Show that
ˆ

n

0

˙

´

ˆ

n

1

˙

`

ˆ

n

2

˙

´ . . .` p´1qn
ˆ

n

n

˙

“ 0

Solution:- The Binomial theorem is

pa` bqn “

ˆ

n

0

˙

an `

ˆ

n

1

˙

an´1b`

ˆ

n

2

˙

an´2b2 ` . . .`

ˆ

n

n

˙

bn

Put a “ 1, b “ ´1 in above equation
we get

p1´ 1qn “

ˆ

n

0

˙

p1qn `

ˆ

n

1

˙

p1qn´1p´1q `

ˆ

n

2

˙

p1qn´2p´1q2 ´ . . .`

ˆ

n

n

˙

p´1qn

0 “

ˆ

n

0

˙

´

ˆ

n

1

˙

`

ˆ

n

2

˙

´ . . .`

ˆ

n

n

˙
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Example 4 Show that
ˆ

n

1

˙

` 2

ˆ

n

2

˙

` 3

ˆ

n

3

˙

` . . .` n

ˆ

n

n

˙

“ n 2n´1

Solution:- The Binomial theorem is

pa` bqn “

ˆ

n

0

˙

an `

ˆ

n

1

˙

an´1b`

ˆ

n

2

˙

an´2b2 ` . . .`

ˆ

n

n

˙

bn

Put a “ 1, n “ n´ 1 in above equation

p1` bqn´1 “

ˆ

n´ 1

0

˙

1n´1
`

ˆ

n´ 1

1

˙

1n´2b`

ˆ

n´ 1

2

˙

1n´3b2 ` . . .`

ˆ

n´ 1

n´ 1

˙

bn´1

“

ˆ

n´ 1

0

˙

`

ˆ

n´ 1

1

˙

b`

ˆ

n´ 1

2

˙

b2 ` . . .`

ˆ

n´ 1

n´ 1

˙

bn´1

Now, multiplying both side above equation by n, we get

np1` bqn´1 “ n

ˆ

n´ 1

0

˙

` n

ˆ

n´ 1

1

˙

b` n

ˆ

n´ 1

2

˙

b2 ` . . .` n

ˆ

n´ 1

n´ 1

˙

bn´1

Now, put b “ 1, we get

n 2n´1
“ n

ˆ

n´ 1

0

˙

` n

ˆ

n´ 1

1

˙

1` n

ˆ

n´ 1

2

˙

12
` . . .` n

ˆ

n´ 1

n´ 1

˙

1n´1

“ n

ˆ

n´ 1

0

˙

` n

ˆ

n´ 1

1

˙

` n

ˆ

n´ 1

2

˙

` . . .` n

ˆ

n´ 1

n´ 1

˙

Now,

n

ˆ

n´ 1

k

˙

“ pk ` 1q

ˆ

n

k ` 1

˙

n 2n´1
“ p0` 1q

ˆ

n

0` 1

˙

` p1` 1q

ˆ

n

1` 1

˙

` p2` 1q

ˆ

n

2` 1

˙

` . . .` pn´ 1` 1q

ˆ

n

n´ 1` 1

˙

so, we get

n 2n´1
“

ˆ

n

1

˙

` 2

ˆ

n

2

˙

` 3

ˆ

n

3

˙

` . . .` n

ˆ

n

n

˙

2 Divisibility Theory
Theorem 3 State and Prove Division Algorithm

Statement:- Given integer a and b, with b ą 0 there exist unique integer q and r satisfying

a “ qb` r 0 ď r ă b

The integers q and r are called respectively the quotient and reminder in the division
of a by b.

Proof:- Let S “ ta´ bx |x P Z, q ´ bx ě 0u
i.e. S is a set of non-negative integers.

Now b ą 0 ñ b ě 1

ñ| a | b ě| a | (5)
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Taking x “ ´ | a |P Z

a´ bx “ a´ bp´ | a |q

“ a` | a | b

ě a` | a | p7 by p5qq

ě 0

6 a´ bx P S

6 S ‰ Φ

Thus S is a non-empty set of non-negative integers.
6 By well-ordering principle S contains a smallest integers say r,

i.e. r P S 6 q P Z such that

r “ a´ qb and 0 ď r

a “ qb` r and 0 ď r (6)

Now, we prove that r ă b.
If possible suppose r ć b.

6 r ą b
6 r ´ b ą 0

Hence

a´ bpq ` 1q “ a´ bq ´ b

“ pa´ bqq ´ b

“ r ´ b

ě 0

6 a´ bpq ` 1q P S

6 r ´ b P S

Which is not possible because r is the smallest integer in S.
6 our supposition r ć b is wrong

6 r ă b (7)

So,from equation (6) and (7) we get

a “ qb` r, 0 ď r ă b

Now, we prove that q and r are unique integer
If suppose not then

a “ qb` r, 0 ď r ă b

a “ q1b` r1, 0 ď r1 ă b

6 bq ` r “ bq1 ` r1

6 bq ´ bq1 “ r1 ´ r

6 bpq ´ q1q “ r1 ´ r

6 | bpq ´ q1q | “| r1 ´ r |

6 | b || q ´ q1 | “| r1 ´ r |

6 b | q ´ q1 | “| r1 ´ r | p7 b ą 0q (8)
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Now,

0 ď r ă b and 0 ď r1 ă b

ñ ´b ă ´r ď 0 and 0 ď r1 ă b

Adding

ñ ´b ă r1 ´ r ă b

ñ | r1 ´ r |ă b

ñ b | q ´ q1 |ă b p7 by equation p8q q

ñ | q ´ q1 |ă 1

ñ | q ´ q1 |ď 0

ñ | q ´ q1 |“ 0 p7 | q ´ q1 |ć 0 q

ñ q ´ q1 “ 0

ñ q “ q1

By equation (8) we get

| r1 ´ r | “ 0

6 r ´ r1 “ 0

6 r “ r1

Hence q and r are unique integers.

Definition 2.1 An integer b is said to be divisible by an integer a ‰ 0, if there exist some integer c
such that b “ ac.And it is denoted by a � b.
we write a ffl b to indicate that b is not divisible by a.

Theorem 4 For Integers a, b, c the following hold:

(a) a � 0, 1 � a, a � a

(b) a � 1, if and only if a˘ 1

(c) If a � b and c � d then ac � bd

(d) If a � b and b � c then a � c

(e) If a � b and b � a if and only if a˘ b.

(f) If a � b and b ‰ 0, then | a |ď| b |

(g) If a � b and If a � c, then a � pbx` cyq for arbitrary integers x and y.

Proof:-
(a) By above definition (2.1) if a � b then there exist an integer c such that b “ ac

Now, a � 0 ñ 0 “ ac take c “ 0
Now, a � 1 ñ a “ 1c take c “ a
Now, a � a ñ a “ ac take c “ 1

Therefore (a) is hold.
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(b) By above definition (2.1) if a � b then there exist an integer c such that b “ ac
(ñ) suppose a � 1
ñ 1 “ ac
So, it is possible when a “ 1 & c “ 1

or a “ ´1 & c “ ´1
ñ a “ ˘1

pðq conversely suppose a˘ 1
ñ a “ 1 or a “ ´1
1.1 “ 1 and p´1qp´1q “ 1
ñ 1 � 1 and ñ ´1 � 1
ñ a � 1 and ñ a � 1

Therefore (b) is hold.

(c) By above definition (2.1) if a � b then there exist an integer c such that b “ ac
so,

a � bñ b “ ac1 where c1 is an integer (9)
c � dñ d “ cc2 where c2 is an integer (10)

Now,equation (9) multiply with equation (10)

bd “ pac1qpcc2q

ñ bd “ pacqpc1c2q

ñ bd “ pacqc3 pwhere c3 “ c1c2, c3 is an integerq

ñ ac � bd

Therefore (c) is hold.

(d) By above definition (2.1) if a � b then there exist an integer c such that b “ ac
so,

a � bñ b “ ac1 where c1 is an integer (11)
b � cñ c “ bc2 where c2 is an integer (12)

ñ c “ ac1c2 pfrom equation p11q q

ñ c “ ac3 where c3 “ c1c2 is an integer

ñ a � c

Therefore (d) is hold.

(e) By above definition (2.1) if a � b then there exist an integer c such that b “ ac
pñq so,

a � bñ b “ ac1 where c1 is an integer (13)
b � añ a “ bc2 where c2 is an integer (14)

ñ a “ ac1c2 pfrom equation p13q q

ñ a “ apc1c2q

ñ c1c2 “ 1
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It is possible only when c1 “ 1 & c2 “ 1 or c1 “ ´1 & c2 “ ´1

If c1 “ c2 “ 1 ñ a “ b pFrom equation p13qq

If c1 “ c2 “ ´1 ñ a “ ´b pFrom equation p14qq

ñ a “ ˘b

pðq conversely if a “ ˘b then a “ b or a “ ´b

a “ bñ b “ a1 ñ a � b

a “ ´bñ a “ bp´1q ñ b � a

Therefore (e) is hold.

(f) By above definition (2.1) if a � b then there exist an integer c such that b “ ac
so,

a � bñ b “ ac

ñ| b | “| ac | ptaking modulas both sidesq

ñ| b | “| a || c |

since b ‰ 0 ñ c ‰ 0
7 c ‰ 0 it follows that

| c | ě 1

ñ | a || c | ě| a |

ñ | b | ě| a |

ñ | a | ď| b |

Therefore (f) is hold.

(g) By above definition (2.1) if a � b then there exist an integer c such that b “ ac
so,

a � bñ b “ ar pwhere r is an integerq (15)
a � cñ c “ as pwhere s is an integerq (16)

But the choice of x and y is

bx` cy “ parqx` pasqy pBy equation p15q and p16q q

bx` cy “ aprx` syq

ñ a � pbx` cyq p7 prx` syq is an integerq

Therefore (g) is hold.
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3 Greatest Common Divisor
Definition 3.1 Let a and b be given integers with at least one of them not zero,then Greatest com-
mon divisor of a and b, denoted by gcdpa, bq is the positive integer d satisfies the following:

(i) d � a and d � b

(ii) If c � a and c � b, then c ď d.

Theorem 5 Prove that given integers a and b not both of zero, then there exist integers x and y
such that gcdpa.bq “ ax` by

Proof:- Consider the set S of all positive linear combination of a and b.

S “ tau` bv | au` bv ą 0, u, v P Zu

First we show S ‰ φ.
If a ‰ 0, then the integer | a |“ au` b0 lies in S, where we choose u “ 1 or u “ ´1
according as a is positive or negative.
So, S ‰ φ
Now, we prove d “ gcdpa, bq
By, well-ordering principle S must contain a smallest element d
Now, by definition of S there exist integer x and y for which d “ ax` by
then we have to prove that d � a and d � b.
If d ffl a then by Division Algorithm there exist integer q and r such that

a “ dq ` r, where 0 ď r ă d

Now, d “ ax` by

ñ dq “ aqx` bqy

ñ a´ r “ aqx` bqy

ñ r “ a´ aqx´ bqy

ñ r “ ap1´ qxq ` bp´qyq

ñ r P S & r ă d

which is contradiction as d is the smallest element of S.
so, d � a.
Similarly by above we can prove d � b.
so, d is common divisor of a and b.
Let c is an arbitrary positive common divisor of the integer a and b.
Then c � a and c � b.
ñ c � pax` byq p7 from theorem 4pgq q
ñ c � d and d ‰ 0
ñ | c |ď| d | p7 from theorem 4pfq q
ñ c ď d.
so, d is a greatest common divisor of a and b.
so, d “ gcdpa, bq

Theorem 6 If a and b are given integers not both zero then the set

T “ tax` by | x, y are integersu

is precisely the set of all multiples of d “ gcdpa, bq
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Proof:- Here we have to prove

T “ tax` by | x, y are integersu

is the precisely of the multiple of nd.
Here d “ gcdpa, bq ñ d � a and d � b
ñ d � pax` byq for all integers x, y.
Thus every member of T is a multiple of d.

Conversely d may be written as d “ ax0 ` by0 for suitable integers x0 and y0
so, that any multiple nd of d is of the form

nd “ npax0 ` by0q

nd “ apnx0q ` bpny0q

Hence, nd is a linear combination of a and b.
so, nd P T .

Definition 3.2 Two integers a and b, not both of which are zero are said to be relatively prime
whenever gcdpa, bq “ 1

Theorem 7 Let a and b be integers not both zero.Then a and b are relatively prime if and only if
there exist integers x and y such that 1 “ ax` by.

Proof:- If a and b are relatively prime so gcdpa, bq “ 1, then by theorem(5) there exist integers
x and y satisfying 1 “ ax` by

conversely suppose that 1 “ ax` by for some choice of x and y.
Suppose that d “ gcdpa, bq ñ d � a and d � b
So, by theorem 4 (g), d � pax` byq ñ d � 1
Now, d is a positive integer, so d “ 1

6 gcdpa, bq “ 1

Thus, integers a and b are relatively prime.

Theorem 8 If gcdpa, bq “ d then gcd

ˆ

a

d
,
b

d

˙

“ 1

Proof:- Here First we show
a

d
and

b

d
are integer

Here gcdpa, bq “ d then d � a and d � b.
d � a then there exist integer n1 such that a “ n1d

6
a

d
“ n1.

d � b then there exist integer n2 such that b “ n2d

6
b

d
“ n2.

so, both
a

d
and

b

d
are integers.

Now, gcdpa, bq “ d then there exist integers x and y such that d “ ax` by
Dividing both side by d, we get

1 “ p
a

d
qx` p

b

d
qy

Because p
a

d
q and p

b

d
q both are integer

So, gcd

ˆ

a

d
,
b

d

˙

“ 1

11



Theorem 9 If a � c and b � c, with gcdpa, bq “ 1 then ab � c.

Proof:- If a � c then there exist an integer such that r such that

c “ ar (17)

If b � c then there exist an integer such that s such that

c “ bs (18)

Now, gcdpa, bq “ 1 then there exist integer x and y such that

1 “ ax` by (19)

Multiply equation (19) by c

ñ c “ acx` bcy

ñ c “ apbsqx` bparqy pfrom equation p17q and p18qq

ñ c “ abpsx` ryq

7 sx` ry is an integer

6 ab � c

Theorem 10 State and Prove Euclid’s Lemma

Statement:- If a � bc with gcdpa, bq “ 1, then a � c

Proof:- Here it is given that gcdpa, bq “ 1, then there exist integers x and y such that

gcdpa, bq “ ax` by

1 “ ax` by (20)

Multiply equation (20) by c

6 c “ acx` bcy (21)

Now, a � bc and also a � ac
it follows that a � acx` bcy for any integers x and y

ñ a � c pfrom eqution p21qq

The Euclidean Algorithm:- For given integers a and b both not zero then find the gcdpa, bq we
procedure the following system equations:

a “ q1b` r1 0 ă r1 ă b

b “ q2r1 ` r2 0 ă r2 ă r1

r1 “ q3r2 ` r3 0 ă r3 ă r2
...

rn´2 “ qnrn´1 ` rn 0 ă rn ă rn´1

rn´1 “ qn`1rn ` 0

This division process continue until some zero remainder appears, say at the pn` 1qth stage where
rn´1 is divided by rn
The last nonzero remainder rn is equal to gcdpa, bq.

12



Example 5 Find gcdp12378, 3054q and obtain integers x and y satisfy following:

gcdp12378, 3054q “ 12378x` 3054y

Solution:- Here we use Euclidean Algorithm

12378 “ 4p3054q ` 162 (22)
3054 “ 18p162q ` 138 (23)
162 “ 1p138q ` 24 (24)
138 “ 5p24q ` 18 (25)
24 “ 1p18q ` 6 (26)
18 “ 3p6q ` 0 (27)

So, gcdp12378, 3054q “ 6

To represent 6 as a linear combination of the integers 12378 and 3054 we start with
the next to last of the displayed and successively eliminate the remainders 18,24,138
and 162.

6 “ 24´ 1p18q pfrom equation p26qq

6 “ 24´ 1p138´ 5p24qq pfrom equation p25qq

6 “ 6p24q ´ 1p138q

6 “ 6p162´ 1p138qq ´ 1p138q pfrom equation p24qq

6 “ 6p162q ´ 7p138q

6 “ 6p162q ´ 7p3054´ 18p162qq pfrom equation p23qq

6 “ 132p162q ´ 7p3054q

6 “ 132p12378´ 4p3054qq ´ 7p3054q pfrom equation p22qq

6 “ 12378p132q ` 3054p´535q

And we have gcdp12378, 3054q “ 6

gcdp12378, 3054q “ 12378p132q ` 3054p´535q

So, x “ 132 and y “ ´535

Example 6 Find gcdp1106, 497q and obtain integers x and y satisfy following:

gcdp1106, 497q “ 1106x` 497y

Solution:- Here we use Euclidean Algorithm

1106 “ 2p497q ` 112 (28)
497 “ 4p112q ` 49 (29)
112 “ 2p49q ` 14 (30)
49 “ 3p14q ` 7 (31)
14 “ 2p7q ` 0 (32)

So, gcdp1106, 497q “ 7

To represent 7 as a linear combination of the integers 1106 and 497 we start with the
next to last of the displayed and successively eliminate the remainders 14,49 and 112

13



7 “ 49´ 3p14q pfrom equation p31qq

7 “ 49´ 3p112´ 2p49qq pfrom equation p30qq

7 “ 7p49q ´ 3p112q

7 “ 7p497´ 4p112qq ´ 3p112q pfrom equation p29qq

7 “ 7p497q ´ 31p112q

7 “ 7p497q ´ 31p1106´ 2p197qq pfrom equation p28qq

7 “ 497p69q ` 1106p´31q

And we have gcdp1106, 497q “ 7

gcdp1106, 497q “ 1106p69q ` 497p´31q

So, x “ 69 and y “ ´31

Definition 3.3 The least common multiple of two nonzero integers a and b denoted by lcm(a,b) is
the positive integer m satisfying the following:

(i) a � m and b � m

(ii) If a � c and b � c with c ą 0, then m ď c.

Theorem 11 For positive integers a and b then prove that

gcdpa, bq.lcmpa, bq “ ab

Proof:- We know that for any positive integer a and b, gcdpa, bq “ d
This implies that d � a and d � b
If d � añ a “ dr; where r is an integer
If d � bñ b “ ds; where s is an integer

If m “
ab

d
Then,

m “
pdrqb

d
& m “

pdsqa

d
“ br & “ as

ñ b � m & a � m

Which shows that m is a positive common multiple of a and b.
Now, let c be any positive integer that is common multiple of a and b
ñ a � c and b � c
ñ c “ au and c “ bv (where u and v are integers)
Also, we know that there exist integer x and y satisfying d “ ax` by
Now,

c

m
“
cd

ab

“
cpax` byq

ab

“
cax

ab
`
cby

ab

“
cx

b
`
cy

a

“ p
c

b
qx` p

c

a
qy

14



c

m
“ vx` uy

c “ mpvx` uyq

ñ m � c

It conclude that m ď c

Thus by definition (3.3),

m “ lcmpa, bq

ñ
ab

d
“ lcmpa, bq

ñ
ab

gcdpa, bq
“ lcmpa, bq

ñ gcdpa, bq.lcmpa, bq “ ab

4 Linear Diophantine Equation
Definition 4.1 The general form of a linear Diophantine equation in two unknown x and y is

ax` by “ c

where a, b and c are integers and a, b are not both zero.

Theorem 12 Prove that the linear Diophantine equation ax` by “ c has a solution if and only if
d � c, where d “ gcdpa, bq
Further, if x0, y0 is any particular solution of this equation then all other solutions are given by

x “ x0 ` p
b

d
qt and y “ y0 ` p

a

d
qt

Where, t is an arbitrary integer

Proof:-pñq Suppose that the equation ax` by “ c has a solution say x0, y0.

6 ax0 ` by0 “ c

Now, d “ gcdpa, bq
6 d � a and d � b

6 a “ dr and b “ ds, where r, s P Z

Now,

c “ ax0 ` by0

c “ pdrqx0 ` pdsqy0

c “ dprx0 ` sy0q

ñ d � c

pðq conversely suppose d � c

6 c “ dt where t P Z

15



Now, d “ gcdpa, bq

6 d “ au` bv, where u, v P Z
6 dt “ tau` tbv

6 dt “ aputq ` bpvtq

6 dt “ ax0 ` by0

where x0 “ ut and y0 “ vt is a particular solution of ax` by “ c
6 the equation ax` by “ c has a solution.

Further Proof:- Suppose x0, y0 is any particular solution of the equation ax ` by “ c and x1, y1

any other solution of ax` by “ c.
Hence

ax0 ` by0 “ c and ax1 ` by1 “ c

ñ ax1 ` by1 “ ax0 ` by0

ñ ax1 ´ ax0 “ by0 ´ by
1

ñ apx1 ´ x0q “ bpy0 ´ y
1
q (33)

Now,

gcdpa, bq “ d

6 gcd

ˆ

a

d
,
b

d

˙

“ 1

6 gcdpr, sq “ 1

where r “
a

d
and s “

b

d
6 a “ dr and b “ ds

Putting these values of a and b in equation (33)
we get

drpx1 ´ x0q “ dspy0 ´ y
1
q

6 rpx1 ´ x0q “ spy0 ´ y
1
q (34)

ñ r � spy0 ´ y
1
q

But, gcdpr, sq “ 1

6 r � y0 ´ y
1

pBy Euclid1s Lemmaq

6 y0 ´ y
1
“ rt For some integer t (35)

From equation (34) we get

rpx1 ´ x0q “ sprtq

6 x1 ´ x0 “ st

6 x1 “ x0 ` st

6 x1 “ x0 ` p
b

d
qt (36)

From equation (35) we get

6 y1 “ y0 ´ rt

6 y1 “ y0 ´ p
a

d
qt (37)
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Hence for any integer t

ax1 ` by1 “ a

„

x0 ` p
b

d
qt



` b
”

y0 ´ p
a

d
qt

ı

pfrom equation p36q and p37qq

“ ax0 ` ap
b

d
qt` by0 ´ bp

a

d
qt

“ ax0 ` by0

“ c p7 x0, y0 is a solution of the equation ax` by “ cq

Hence all other solution are given by

x “ x0 ` p
b

d
qt

y “ y0 ´ p
a

d
qt where t is an integer

Example 7 Find the General Solution of the linear Diophantine equation

172x` 20y “ 1000

Solution:- First we find gcdp172, 20q

172 “ 8p20q ` 12 (38)
20 “ 1p12q ` 8 (39)
12 “ 1p8q ` 4 (40)
8 “ 2p4q ` 0

Hence gcdp172, 20q “ 4 and 4 � 1000
6 The Solution of the given equation exists.
Now,

4 “ 12´ 1p8q pfron equation p40qq

4 “ 12´ 1p20´ 1p12q pfron equation p39qq

4 “ 2p12q ´ 1p20q

4 “ 2p172´ 8p20qq ´ 1p20q pfron equation p38qq

4 “ 2p172q ´ 17p20q (41)

Multiplying equation (41) by 250 we get

1000 “ 172p500q ` 20p´4250q

Thus one solution of the given Diophantine equation is given by

x0 “ 500 & y0 “ ´4250

Now,general solution of given Diophantine equation is given by

x “ x0 ` p
b

d
tq

“ 500` p
20

4
qt

x “ 500` 5t (42)

y “ y0 ´ p
a

d
tq

“ p´4250q ´ p
172

4
qt

y “ ´4250´ 43t (43)
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Now from equation (42) we get

5t` 500 ą 0

t ą ´100 (44)

And from equation (43) we get

´4250´ 43t ą 0

´4250

43
ą t

´98.83 ą t (45)

From equation (44) and (45) we get

´100 ă t ă ´98.83

Thus we get t “ ´99
Put t “ ´99 in equation (42) and (43) we get unique positive solution of Diophantine
equation is x “ 5 and y “ 7

Example 8 A customer bought a dozen pieces of fruit, apples and oranges,for $1.32 “ r132 centss.
If an apple 3 cents more than an orange and more apples then oranges were purchased, how many
pieces of each kind were bought?

Solution:- Suppose x is the number of apples purchased.
And y is the number of oranges purchased

6 x` y “ 12 (46)

Suppose z is the cost of an orange in cent.
And z ` 3 is the cost of an apple in cent.
6 we get

pz ` 3qx` zy “ 132

6 zx` 3x` zy “ 132

6 zpx` yq ` 3x “ 132

6 3x` zpx` yq “ 132

6 3x` 12z “ 132 pfrom equation p46qq

6 x` 4z “ 44 (47)

Now, gcdp1, 4q “ 1 and 1 � 44 therefore the solution of this equation exists.

1 “ 1p´3q ` 4p1q

Multiply above equation by (44) we get

44 “ 1p´132q ` 4p44q

6 x0 “´ 132 & z0 “ 44

This is one solution of the equation.
All the solution are of the form

x “ ´132` 4t (48)
z “ 44` p´1qt where t P Z (49)
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Now, apples are more than oranges
Therefore we get

x ą y and

x` y “ 12

6 x ě 12 p7 y ě 0q (50)

Now,

x ą 12´ x

6 2x ą 12

6 x ą 6 (51)

Now, from equation (50) and (51) we get,

6 ă x ď 12

6 6 ă ´132` 4t ď 12 pfrom equation p48qq

6 138 ă 4t ď 144

6 34.5 ă t ď 36

6 t “ 35 and t “ 36
Now, t “ 35 and from equation (48) we get x “ 8, y “ 4 and z “ 9
Now, t “ 36 and from equation (48) we get x “ 12, y “ 0 and z “ 8
So, there are two possible purchase:

(i) 8 apples at 12 cents each and 4 apples at 9 cents each.
(ii) 12 apples at 11 cents each.

5 Exercises
1. By Principle of Mathematical induction Show that

1` 2` 22
` 23

` . . .` 2n´1
“ 2n

´ 1

2. By Principle of Mathematical induction Show that

1.2` 2.3` 3.4` . . .` n.pn` 1q “
npn` 1qpn` 2q

3

3. Find gcdp726, 275q and obtain integers x and y satisfy following:

gcdp726, 275q “ 726x` 275y

4. Find gcdp1769, 2378q and obtain integers x and y satisfy following:

gcdp1769, 2378q “ 1769x` 2378y

5. Find (i) lcmp306, 257q and (ii) lcmp272, 1479q

6. Find General solution of the linear Diophantine equation

54x` 21y “ 906

7. If a cook is worth 5 coins, a hen 3 coins and three chicks together 1 coin, how many
cocks,hens and chicks totaling 100, can be bought for 100 coins?
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