SHRI GOVIND GURU UNIVERSITY
 B.Sc.Sem-5 Material
 BSCSE506:Mathematics(Theory)
 Number Theory(E.C)

Unit-I

Unit-I:Some Preliminary Consideration: Well-Ordering Principle, Mathematical Induction, the Binomial Theorem \& binomial coefficients.
Divisibility Theory: the division algorithm, divisor, remainder, prime, relatively prime, the greatest common divisor, the Euclidean algorithm (Without proof), the least common multiple, the linear Diophantine equation \& its solution.

1 Some Preliminary Consideration

Well-Ordering Principle :- Every non-empty set S of non-negative integers contains a least element; That is there is some integer a in S such that $a \leqslant b$ for all b belonging to S.

Theorem 1 State and Prove First Principal of Mathematical Induction
Statement :- Let S be a set of positive integers with the following properties:
(a) The integer 1 belongs to S.
(b) Whenever the integer k in S, the next integer $k+1$ must also be in S.

Then S is the set of all positive integers.
Proof:- Let T be the set of all positive integers not in S, and assume that T is non-empty.
The Well-Ordering Principle tells us that T possesses a least element, which we denote by a.
Because 1 is in S, certainly $a>1$, and so $0<a-1<a$.
The choice of a is the smallest positive integer in T implies that $a-1$ is not a member of T, or equivalently that $a-1$ belongs to S.
By hypothesis, S must also contain $(a-1)+1=a$, which contradicts the fact that a lies in T.
We conclude that the set T is empty and in consequence that S contains all the positive integers.

Example 1 Prove That

$$
1^{2}+2^{2}+3^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

Solution:- Here we use principle of Mathematical induction to establish the formula.

$$
\begin{equation*}
p(n): 1^{2}+2^{2}+3^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6} \tag{1}
\end{equation*}
$$

First we check for $n=1$

$$
\begin{aligned}
\text { L.H.S. } & =p(1)=1^{2}=1 \\
\text { R.H.S. } & =\frac{n(n+1)(2 n+1)}{6} \\
& =\frac{1(1+1)(2(1)+1)}{6} \\
& =\frac{(1)(2)(3)}{6} \\
& =\frac{6}{6} \\
& =1 \\
\therefore \text { L.H.S. } & =\text { R.H.S. }
\end{aligned}
$$

so, equation (1) is true for $n=1$
Now. we check for $n=2$

$$
\begin{aligned}
\text { L.H.S. } & =p(1)=1^{2}+2^{2}=5 \\
\text { R.H.S. } & =\frac{n(n+1)(2 n+1)}{6} \\
& =\frac{2(2+1)(2(2)+1)}{6} \\
& =\frac{(2)(3)(5)}{6} \\
& =\frac{30}{6} \\
& =5
\end{aligned}
$$

$$
\therefore \text { L.H.S. }=\text { R.H.S. }
$$

so, equation (1) is true for $n=2$
Now, suppose equation (1) is true for $n=k$ where $k \in \mathbb{N}$.

$$
\begin{equation*}
p(k): 1^{2}+2^{2}+3^{2}+\ldots+k^{2}=\frac{k(k+1)(2 k+1)}{6} \tag{2}
\end{equation*}
$$

and we have to show that equation (1) is true for $n=k+1$.
To obtain that sum of the first $k+1$ squares we add the next one $(k+1)^{2}$ to both side of equation (2).
This gives

$$
\begin{aligned}
1^{2}+2^{2}+3^{2}+\ldots+k^{2}+(k+1)^{2} & =\frac{k(k+1)(2 k+1)}{6}+(k+1)^{2} \\
& =(k+1)\left[\frac{k(2 k+1)}{6}+(k+1)\right] \\
& =(k+1)\left[\frac{k(2 k+1)+6(k+1)}{6}\right] \\
& =(k+1)\left[\frac{2 k^{2}+k+6 k+6}{6}\right] \\
& =(k+1)\left[\frac{2 k^{2}+7 k+6}{6}\right]
\end{aligned}
$$

$$
\begin{aligned}
1^{2}+2^{2}+3^{2}+\ldots+k^{2}+(k+1)^{2} & =(k+1)\left[\frac{(k+2)(2 k+3)}{6}\right] \\
& =\left[\frac{(k+1)((k+1)+1)(2(k+1)+1)}{6}\right]
\end{aligned}
$$

So, the equation is true for $n=k+1$
$p(k)$ is true $\Rightarrow p(k+1)$ is true.
By principle of mathematical induction our result is true for $\forall n \in \mathbb{N}$.
Hence,

$$
1^{2}+2^{2}+3^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

Theorem 2 State and Prove Binomial Theorem Statement:-

$$
(a+b)^{n}=\binom{n}{0} a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\ldots+\binom{n}{n-1} a b^{n-1}+\binom{n}{n} b^{n}
$$

Proof:- We use the principle of mathematical induction to establish this formula

$$
\begin{equation*}
(a+b)^{n}=\binom{n}{0} a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\ldots+\binom{n}{n-1} a b^{n-1}+\binom{n}{n} b^{n} \tag{3}
\end{equation*}
$$

First we check this formula is true for $n=1$

$$
\begin{aligned}
\text { L.H.S. } & =(a+b)^{1}=(a+b) \\
\text { R.H.S. } & =\binom{1}{0} a^{1}+\binom{1}{1} a^{1-1} b^{1} \\
& =(a+b)
\end{aligned}
$$

so result is true for $n=1$
Now, suppose this equation (3) is true for $n=m$

$$
\begin{equation*}
(a+b)^{m}=\binom{m}{0} a^{m}+\binom{m}{1} a^{m-1} b+\binom{m}{2} a^{m-2} b^{2}+\ldots+\binom{m}{m-1} a b^{m-1}+\binom{m}{m} b^{m} \tag{4}
\end{equation*}
$$

we have to prove that equation (3) is true for $n=m+1$
multiply both side of equation (4) by $(a+b)$

$$
\begin{aligned}
(a+b)^{m}(a+b)= & {\left[\binom{m}{0} a^{m}+\binom{m}{1} a^{m-1} b+\binom{m}{2} a^{m-2} b^{2}+\ldots+\binom{m}{m-1} a b^{m-1}+\binom{m}{m} b^{m}\right](a+b) } \\
= & \binom{m}{0} a^{m+1}+\binom{m}{1} a^{m} b+\binom{m}{2} a^{m-1} b^{2}+\ldots+\binom{m}{m-1} a^{2} b^{m-1}+\binom{m}{m} a b^{m}+ \\
& \binom{m}{0} a^{m} b+\binom{m}{1} a^{m} b^{2}+\binom{m}{2} a^{m-1} b^{3}+\ldots+\binom{m}{m-1} a^{2} b^{m}+\binom{m}{m} b^{m+1} \\
= & \binom{m+1}{0} a^{m+1}+\binom{m}{1} a^{m} b+\binom{m}{2} a^{m-1} b^{2}+\ldots+\binom{m}{m-1} a^{2} b^{m-1}+\binom{m}{m} a b^{m}+ \\
& \binom{m}{0} a^{m} b+\binom{m}{1} a^{m} b^{2}+\binom{m}{2} a^{m-1} b^{3}+\ldots+\binom{m}{m-1} a^{2} b^{m}+\binom{m+1}{m+1} b^{m+1} \\
& {\left[\because\binom{m}{m}=\binom{m+1}{m+1}=1,\binom{m}{0}=\binom{m+1}{0}=1\right] }
\end{aligned}
$$

$$
\begin{aligned}
(a+b)^{m+1}= & \binom{m+1}{0} a^{m+1}+\left[\binom{m}{1}+\binom{m}{0}\right] a^{m} b+\left[\binom{m}{2}+\binom{m}{1}\right] a^{m-1} b^{2}+ \\
& {\left[\binom{m}{3}+\binom{m}{2}\right] a^{m-2} b^{3}+\ldots+\left[\binom{m}{m}+\binom{m}{m-1}\right] a b^{m}+\binom{m+1}{m+1} b^{m+1} }
\end{aligned}
$$

from Pascal's Rule

$$
\begin{aligned}
&\binom{n}{k}+\binom{n}{k-1}=\binom{n+1}{k} \\
&(a+b)^{m+1}=\binom{m+1}{0} a^{m+1}+\binom{m+1}{1} a^{m} b+\binom{m+1}{2} a^{m-1} b^{2}+\ldots+\binom{m+1}{m} a b^{m}+ \\
&\binom{m+1}{m+1} b^{m+1}
\end{aligned}
$$

so, the formula is true for $n=m+1$
By Principle of mathematical induction we establish binomial theorem

$$
(a+b)^{n}=\binom{n}{0} a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\ldots+\binom{n}{n-1} a b^{n-1}+\binom{n}{n} b^{n}
$$

Example 2 Show that

$$
\binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\ldots+\binom{n}{n}=2^{n}
$$

Solution:- The Binomial theorem is

$$
(a+b)^{n}=\binom{n}{0} a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\ldots+\binom{n}{n} b^{n}
$$

Put $a=b=1$ in above equation
we get

$$
\begin{aligned}
(1+1)^{n} & =\binom{n}{0}(1)^{n}+\binom{n}{1}(1)^{n-1} 1+\binom{n}{2}(1)^{n-2} 1^{2}+\ldots+\binom{n}{n}(1)^{n} \\
2^{n} & =\binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\ldots+\binom{n}{n}
\end{aligned}
$$

Example 3 Show that

$$
\binom{n}{0}-\binom{n}{1}+\binom{n}{2}-\ldots+(-1)^{n}\binom{n}{n}=0
$$

Solution:- The Binomial theorem is

$$
(a+b)^{n}=\binom{n}{0} a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\ldots+\binom{n}{n} b^{n}
$$

Put $a=1, b=-1$ in above equation we get

$$
\begin{aligned}
(1-1)^{n} & =\binom{n}{0}(1)^{n}+\binom{n}{1}(1)^{n-1}(-1)+\binom{n}{2}(1)^{n-2}(-1)^{2}-\ldots+\binom{n}{n}(-1)^{n} \\
0 & =\binom{n}{0}-\binom{n}{1}+\binom{n}{2}-\ldots+\binom{n}{n}
\end{aligned}
$$

Example 4 Show that

$$
\binom{n}{1}+2\binom{n}{2}+3\binom{n}{3}+\ldots+n\binom{n}{n}=n 2^{n-1}
$$

Solution:- The Binomial theorem is

$$
(a+b)^{n}=\binom{n}{0} a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\ldots+\binom{n}{n} b^{n}
$$

Put $a=1, n=n-1$ in above equation

$$
\begin{aligned}
(1+b)^{n-1} & =\binom{n-1}{0} 1^{n-1}+\binom{n-1}{1} 1^{n-2} b+\binom{n-1}{2} 1^{n-3} b^{2}+\ldots+\binom{n-1}{n-1} b^{n-1} \\
& =\binom{n-1}{0}+\binom{n-1}{1} b+\binom{n-1}{2} b^{2}+\ldots+\binom{n-1}{n-1} b^{n-1}
\end{aligned}
$$

Now, multiplying both side above equation by n, we get

$$
n(1+b)^{n-1}=n\binom{n-1}{0}+n\binom{n-1}{1} b+n\binom{n-1}{2} b^{2}+\ldots+n\binom{n-1}{n-1} b^{n-1}
$$

Now, put $b=1$, we get

$$
\begin{aligned}
n 2^{n-1} & =n\binom{n-1}{0}+n\binom{n-1}{1} 1+n\binom{n-1}{2} 1^{2}+\ldots+n\binom{n-1}{n-1} 1^{n-1} \\
& =n\binom{n-1}{0}+n\binom{n-1}{1}+n\binom{n-1}{2}+\ldots+n\binom{n-1}{n-1}
\end{aligned}
$$

Now,

$$
n\binom{n-1}{k}=(k+1)\binom{n}{k+1}
$$

$n 2^{n-1}=(0+1)\binom{n}{0+1}+(1+1)\binom{n}{1+1}+(2+1)\binom{n}{2+1}+\ldots+(n-1+1)\binom{n}{n-1+1}$
so, we get

$$
n 2^{n-1}=\binom{n}{1}+2\binom{n}{2}+3\binom{n}{3}+\ldots+n\binom{n}{n}
$$

2 Divisibility Theory

Theorem 3 State and Prove Division Algorithm

Statement:- Given integer a and b, with $b>0$ there exist unique integer q and r satisfying

$$
a=q b+r \quad 0 \leqslant r<b
$$

The integers q and r are called respectively the quotient and reminder in the division of a by b.

Proof:- Let $S=\{a-b x \mid x \in \mathbb{Z}, q-b x \geqslant 0\}$ i.e. S is a set of non-negative integers.

$$
\text { Now } \begin{align*}
b>0 & \Rightarrow b \geqslant 1 \\
& \Rightarrow|a| b \geqslant|a| \tag{5}
\end{align*}
$$

Taking $x=-|a| \in \mathbb{Z}$

$$
\begin{aligned}
a-b x & =a-b(-|a|) \\
& =a+|a| b \\
& \geqslant a+|a| \quad(\because b y(5)) \\
& \geqslant 0 \\
\therefore a-b x & \in S \\
\therefore S & \neq \Phi
\end{aligned}
$$

Thus S is a non-empty set of non-negative integers.
\therefore By well-ordering principle S contains a smallest integers say r, i.e. $r \in S \quad \therefore q \in \mathbb{Z}$ such that

$$
\begin{array}{llll}
r=a-q b & \text { and } & 0 \leqslant r \\
a=q b+r & \text { and } & 0 \leqslant r \tag{6}
\end{array}
$$

Now, we prove that $r<b$.
If possible suppose $r \nless b$.

$$
\begin{aligned}
& \therefore r>b \\
& \therefore r-b>0
\end{aligned}
$$

Hence

$$
\begin{aligned}
a-b(q+1) & =a-b q-b \\
& =(a-b q)-b \\
& =r-b \\
& \geqslant 0 \\
\therefore a-b(q+1) & \in S \\
\therefore r-b & \in S
\end{aligned}
$$

Which is not possible because r is the smallest integer in S.
\therefore our supposition $r \nless b$ is wrong

$$
\begin{equation*}
\therefore r<b \tag{7}
\end{equation*}
$$

So, from equation (6) and (7) we get

$$
a=q b+r, \quad 0 \leqslant r<b
$$

Now, we prove that q and r are unique integer If suppose not then

$$
\begin{align*}
& \quad a=q b+r, \quad 0 \leqslant r<b \\
& a=q^{\prime} b+r^{\prime}, \quad 0 \leqslant r^{\prime}<b \\
& \therefore b q+r=b q^{\prime}+r^{\prime} \\
& \therefore b q-b q^{\prime}=r^{\prime}-r \\
& \therefore b\left(q-q^{\prime}\right)=r^{\prime}-r \\
& \therefore\left|b\left(q-q^{\prime}\right)\right|=\left|r^{\prime}-r\right| \\
& \therefore|b|\left|q-q^{\prime}\right|=\left|r^{\prime}-r\right| \\
& \therefore b\left|q-q^{\prime}\right|=\left|r^{\prime}-r\right| \quad(\because b>0) \tag{8}
\end{align*}
$$

Now,

$$
\begin{array}{rlll}
& 0 \leqslant r<b & \text { and } & 0 \leqslant r^{\prime}<b \\
\Rightarrow & -b<-r \leqslant 0 & \text { and } & 0 \leqslant r^{\prime}<b
\end{array}
$$

Adding

$$
\begin{array}{ll}
\Rightarrow & -b<r^{\prime}-r<b \\
\Rightarrow & \left|r^{\prime}-r\right|<b \\
\Rightarrow & b\left|q-q^{\prime}\right|<b \quad(\because \text { by equation (8) }) \\
\Rightarrow & \left|q-q^{\prime}\right|<1 \\
\Rightarrow & \left|q-q^{\prime}\right| \leqslant 0 \\
\Rightarrow & \left|q-q^{\prime}\right|=0 \\
\Rightarrow & q-q^{\prime}=0 \\
\Rightarrow & q=q^{\prime}
\end{array}
$$

By equation (8) we get

$$
\begin{aligned}
\left|r^{\prime}-r\right| & =0 \\
\therefore r-r^{\prime} & =0 \\
\therefore r & =r^{\prime}
\end{aligned}
$$

Hence q and r are unique integers.
Definition 2.1 An integer b is said to be divisible by an integer $a \neq 0$, if there exist some integer c such that $b=a c$.And it is denoted by $a \mid b$. we write $a \not \backslash b$ to indicate that b is not divisible by a.

Theorem 4 For Integers a, b, c the following hold:
(a) $a|0,1| a, a \mid a$
(b) $a \mid 1$, if and only if $a \pm 1$
(c) If $a \mid b$ and $c \mid d$ then $a c \mid b d$
(d) If $a \mid b$ and $b \mid c$ then $a \mid c$
(e) If $a \mid b$ and $b \mid a$ if and only if $a \pm b$.
(f) If $a \mid b$ and $b \neq 0$, then $|a| \leqslant|b|$
(g) If $a \mid b$ and If $a \mid c$, then $a \mid(b x+c y)$ for arbitrary integers x and y.

Proof:-

(a) By above definition (2.1) if $a \mid b$ then there exist an integer c such that $b=a c$

Now, $a \mid 0 \Rightarrow 0=$ ac take $c=0$
Now, $a \mid 1 \Rightarrow a=1 c$ take $c=a$
Now, $a \mid a \Rightarrow a=$ ac take $c=1$
Therefore (a) is hold.
(b) By above definition (2.1) if $a \mid b$ then there exist an integer c such that $b=a c$ $(\Rightarrow) \quad$ suppose $a \mid 1$

$$
\Rightarrow \quad 1=a c
$$

So, it is possible when $a=1 \quad \& \quad c=1$

$$
\begin{array}{cl}
\text { or } & a=-1 \quad \& \quad c=-1 \\
& \Rightarrow a= \pm 1
\end{array}
$$

(\Leftarrow) conversely suppose $a \pm 1$

$$
\begin{aligned}
& \Rightarrow \quad a=1 \quad \text { or } \quad a=-1 \\
& 1.1=1 \quad \text { and } \quad(-1)(-1)=1 \\
& \Rightarrow 1 \mid 1 \quad \text { and } \quad \Rightarrow-1 \mid 1 \\
& \Rightarrow a \mid 1 \quad \text { and } \quad \Rightarrow a \mid 1
\end{aligned}
$$

Therefore (b) is hold.
(c) By above definition (2.1) if $a \mid b$ then there exist an integer c such that $b=a c$ so,

$$
\begin{align*}
& a \mid b \Rightarrow b=a c_{1} \quad \text { where } c_{1} \text { is an integer } \tag{9}\\
& c \mid d \Rightarrow d=c c_{2} \quad \text { where } c_{2} \text { is an integer } \tag{10}
\end{align*}
$$

Now,equation (9) multiply with equation (10)

$$
\begin{aligned}
& b d=\left(a c_{1}\right)\left(c c_{2}\right) \\
\Rightarrow & b d=(a c)\left(c_{1} c_{2}\right) \\
\Rightarrow & b d=(a c) c_{3} \quad\left(\text { where } c_{3}=c_{1} c_{2}, c_{3} \text { is an integer }\right) \\
\Rightarrow & a c \mid b d
\end{aligned}
$$

Therefore (c) is hold.
(d) By above definition (2.1) if $a \mid b$ then there exist an integer c such that $b=a c$ so,

$$
\begin{align*}
a \mid b & \Rightarrow b=a c_{1} & & \text { where } c_{1} \text { is an integer } \tag{11}\\
b \mid c & \Rightarrow c=b c_{2} & & \text { where } c_{2} \text { is an integer } \tag{12}\\
& \Rightarrow c=a c_{1} c_{2} & & \text { (from equation }(11) \text {) } \\
& \Rightarrow c=a c_{3} & & \text { where } c_{3}=c_{1} c_{2} \text { is an integer } \\
& \Rightarrow a \mid c & &
\end{align*}
$$

Therefore (d) is hold.
(e) By above definition (2.1) if $a \mid b$ then there exist an integer c such that $b=a c$ (\Rightarrow) so,

$$
\begin{align*}
a \mid b & \Rightarrow b \tag{13}\\
b \mid a & \Rightarrow a c_{1} \quad \tag{14}\\
& \Rightarrow b c_{2} \quad \text { where } c_{1} \text { is an integer } \\
& \Rightarrow a=a c_{1} c_{2} \quad \text { where } c_{2} \text { is an integer } \\
\Rightarrow a & =a\left(c_{1} c_{2}\right) \\
\Rightarrow c_{1} c_{2} & =1
\end{align*}
$$

It is possible only when $c_{1}=1 \& c_{2}=1$ or $c_{1}=-1 \& c_{2}=-1$

$$
\begin{array}{rlrl}
\text { If } c_{1}=c_{2}=1 & \Rightarrow a=b & & \text { (From equation (13)) } \\
\text { If } c_{1}=c_{2}=-1 & \Rightarrow a=-b \\
& \Rightarrow a= \pm b & & \text { (From equation (14)) }
\end{array}
$$

(\Leftarrow) conversely if $a= \pm b$ then $a=b$ or $a=-b$

$$
\begin{aligned}
a=b \Rightarrow b=a 1 & \Rightarrow a \mid b \\
a=-b \Rightarrow a=b(-1) & \Rightarrow b \mid a
\end{aligned}
$$

Therefore (e) is hold.
(f) By above definition (2.1) if $a \mid b$ then there exist an integer c such that $b=a c$ so,

$$
\begin{aligned}
& a \mid b \Rightarrow b=a c \\
& \quad \Rightarrow|b|=|a c| \quad \text { (taking modulas both sides) } \\
& \Rightarrow|b|=|a||c|
\end{aligned}
$$

since $b \neq 0 \Rightarrow c \neq 0$
$\because c \neq 0$ it follows that

$$
\begin{array}{r}
|c| \geqslant 1 \\
\Rightarrow|a||c| \geqslant|a| \\
\Rightarrow|b| \geqslant|a| \\
\Rightarrow|a| \leqslant|b|
\end{array}
$$

Therefore (f) is hold.
(g) By above definition (2.1) if $a \mid b$ then there exist an integer c such that $b=a c$ so,

$$
\begin{array}{lll}
a \mid b \Rightarrow b=a r & & \text { (where } r \text { is an integer) } \\
a \mid c \Rightarrow c=a s & & \text { (where s is an integer) } \tag{16}
\end{array}
$$

But the choice of x and y is

$$
\begin{array}{rlrl}
b x+c y & =(a r) x+(a s) y & & (\text { By equation }(15) \text { and }(16)) \\
b x+c y & =a(r x+s y) & & \\
\quad \Rightarrow a \mid(b x+c y) & (\because(r x+s y) \text { is an integer })
\end{array}
$$

Therefore (g) is hold.

3 Greatest Common Divisor

Definition 3.1 Let a and b be given integers with at least one of them not zero,then Greatest common divisor of a and b, denoted by $\operatorname{gcd}(a, b)$ is the positive integer d satisfies the following:
(i) $d \mid a$ and $d \mid b$
(ii) If $c \mid a$ and $c \mid b$, then $c \leqslant d$.

Theorem 5 Prove that given integers a and b not both of zero, then there exist integers x and y such that $\operatorname{gcd}(a . b)=a x+b y$

Proof:- Consider the set S of all positive linear combination of a and b.

$$
S=\{a u+b v \mid a u+b v>0, u, v \in \mathbb{Z}\}
$$

First we show $S \neq \phi$.
If $a \neq 0$, then the integer $|a|=a u+b 0$ lies in S, where we choose $u=1$ or $u=-1$
according as a is positive or negative.
So, $S \neq \phi$
Now, we prove $d=\operatorname{gcd}(a, b)$
By, well-ordering principle S must contain a smallest element d
Now, by definition of S there exist integer x and y for which $d=a x+b y$
then we have to prove that $d \mid a$ and $d \mid b$.
If $d \npreceq$ a then by Division Algorithm there exist integer q and r such that

$$
\begin{aligned}
a & =d q+r, \quad \text { where } 0 \leqslant r<d \\
\text { Now, } \quad d & =a x+b y \\
\Rightarrow d q & =a q x+b q y \\
\Rightarrow a-r & =a q x+b q y \\
\Rightarrow r & =a-a q x-b q y \\
\Rightarrow r & =a(1-q x)+b(-q y) \\
\Rightarrow r & \in S \& r<d
\end{aligned}
$$

which is contradiction as d is the smallest element of S.
so, $d \mid a$.
Similarly by above we can prove $d \mid b$.
so, d is common divisor of a and b.
Let c is an arbitrary positive common divisor of the integer a and b.
Then $c \mid a$ and $c \mid b$.
$\Rightarrow c \mid(a x+b y) \quad(\because$ from theorem $4(g))$
$\Rightarrow c \mid d$ and $d \neq 0$
$\Rightarrow|c| \leqslant|d| \quad(\because$ from theorem $4(f))$
$\Rightarrow c \leqslant d$.
so, d is a greatest common divisor of a and b.
so, $d=\operatorname{gcd}(a, b)$
Theorem 6 If a and b are given integers not both zero then the set

$$
T=\{a x+b y \mid x, y \text { are integers }\}
$$

is precisely the set of all multiples of $d=\operatorname{gcd}(a, b)$

Proof:- Here we have to prove

$$
T=\{a x+b y \mid x, y \text { are integers }\}
$$

is the precisely of the multiple of nd.
Here $d=\operatorname{gcd}(a, b) \Rightarrow d \mid a$ and $d \mid b$
$\Rightarrow d \mid(a x+b y)$ for all integers x, y.
Thus every member of T is a multiple of d.

Conversely d may be written as $d=a x_{0}+b y_{0}$ for suitable integers x_{0} and y_{0} so, that any multiple nd of d is of the form

$$
\begin{aligned}
& n d=n\left(a x_{0}+b y_{0}\right) \\
& n d=a\left(n x_{0}\right)+b\left(n y_{0}\right)
\end{aligned}
$$

Hence, $n d$ is a linear combination of a and b. so, $n d \in T$.

Definition 3.2 Two integers a and b, not both of which are zero are said to be relatively prime whenever $\operatorname{gcd}(a, b)=1$

Theorem 7 Let a and b be integers not both zero.Then a and b are relatively prime if and only if there exist integers x and y such that $1=a x+b y$.

Proof:- If a and b are relatively prime so $\operatorname{gcd}(a, b)=1$, then by theorem(5) there exist integers x and y satisfying $1=a x+b y$
conversely suppose that $1=a x+b y$ for some choice of x and y.
Suppose that $d=\operatorname{gcd}(a, b) \Rightarrow d \mid a$ and $d \mid b$
So, by theorem $4(g), d|(a x+b y) \Rightarrow d| 1$
Now, d is a positive integer, so $d=1$

$$
\therefore \operatorname{gcd}(a, b)=1
$$

Thus, integers a and b are relatively prime.
Theorem 8 If $\operatorname{gcd}(a, b)=d$ then $\operatorname{gcd}\left(\frac{a}{d}, \frac{b}{d}\right)=1$
Proof:- Here First we show $\frac{a}{d}$ and $\frac{b}{d}$ are integer
Here $\operatorname{gcd}(a, b)=d$ then $d \mid a$ and $d \mid b$.
$d \mid a$ then there exist integer n_{1} such that $a=n_{1} d$
$\therefore \frac{a}{d}=n_{1}$.
$d \mid b$ then there exist integer n_{2} such that $b=n_{2} d$
$\therefore \frac{b}{d}=n_{2}$.
so, both $\frac{a}{d}$ and $\frac{b}{d}$ are integers.
Now, $\operatorname{gcd}(a, b)=d$ then there exist integers x and y such that $d=a x+b y$
Dividing both side by d, we get

$$
1=\left(\frac{a}{d}\right) x+\left(\frac{b}{d}\right) y
$$

Because $\left(\frac{a}{d}\right)$ and $\left(\frac{b}{d}\right)$ both are integer
So, $\operatorname{gcd}\left(\frac{a}{d}, \frac{b}{d}\right)=1$

Theorem 9 If $a \mid c$ and $b \mid c$, with $\operatorname{gcd}(a, b)=1$ then $a b \mid c$.
Proof:- If $a \mid c$ then there exist an integer such that r such that

$$
\begin{equation*}
c=a r \tag{17}
\end{equation*}
$$

If $b \mid c$ then there exist an integer such that s such that

$$
\begin{equation*}
c=b s \tag{18}
\end{equation*}
$$

Now, $\operatorname{gcd}(a, b)=1$ then there exist integer x and y such that

$$
\begin{equation*}
1=a x+b y \tag{19}
\end{equation*}
$$

Multiply equation (19) by c

$$
\begin{aligned}
& \Rightarrow c=a c x+b c y \\
& \Rightarrow c=a(b s) x+b(a r) y \quad \text { (from equation (17) and (18)) } \\
& \Rightarrow c=a b(s x+r y) \\
\because s x & +r y \text { is an integer } \\
& \therefore a b \mid c
\end{aligned}
$$

Theorem 10 State and Prove Euclid's Lemma

Statement:- If $a \mid b c$ with $\operatorname{gcd}(a, b)=1$, then $a \mid c$
Proof:- Here it is given that $\operatorname{gcd}(a, b)=1$, then there exist integers x and y such that

$$
\begin{align*}
\operatorname{gcd}(a, b) & =a x+b y \\
1 & =a x+b y \tag{20}
\end{align*}
$$

Multiply equation (20) by c

$$
\begin{equation*}
\therefore c=a c x+b c y \tag{21}
\end{equation*}
$$

Now, $a \mid$ bc and also $a \mid$ ac
it follows that $a \mid a c x+b c y$ for any integers x and y

$$
\Rightarrow a \mid c \quad \text { (from eqution (21)) }
$$

The Euclidean Algorithm:- For given integers a and b both not zero then find the $\operatorname{gcd}(a, b)$ we procedure the following system equations:

$$
\begin{array}{rlrl}
a & =q_{1} b+r_{1} & & 0<r_{1}<b \\
b & =q_{2} r_{1}+r_{2} & & 0<r_{2}<r_{1} \\
r_{1} & =q_{3} r_{2}+r_{3} & & 0<r_{3}<r_{2} \\
\vdots & & \\
r_{n-2} & =q_{n} r_{n-1}+r_{n} & & 0<r_{n}<r_{n-1} \\
r_{n-1} & =q_{n+1} r_{n}+0 & &
\end{array}
$$

This division process continue until some zero remainder appears, say at the $(n+1)^{t h}$ stage where r_{n-1} is divided by r_{n}
The last nonzero remainder r_{n} is equal to $\operatorname{gcd}(a, b)$.

Example 5 Find $\operatorname{gcd}(12378,3054)$ and obtain integers x and y satisfy following:

$$
\operatorname{gcd}(12378,3054)=12378 x+3054 y
$$

Solution:- Here we use Euclidean Algorithm

$$
\begin{align*}
12378 & =4(3054)+162 \tag{22}\\
3054 & =18(162)+138 \tag{23}\\
162 & =1(138)+24 \tag{24}\\
138 & =5(24)+18 \tag{25}\\
24 & =1(18)+6 \tag{26}\\
18 & =3(6)+0 \tag{27}
\end{align*}
$$

So, $\operatorname{gcd}(12378,3054)=6$
To represent 6 as a linear combination of the integers 12378 and 3054 we start with the next to last of the displayed and successively eliminate the remainders 18,24,138 and 162 .

$$
\begin{array}{ll}
6=24-1(18) & (\text { from equation }(26)) \\
6=24-1(138-5(24)) & \\
6=6(24)-1(138) & \\
6=6(162-1(138))-1(138) & \\
6=6(162)-7(138) & \\
6=6(162)-7(3054-18(162)) & \\
6=132(162)-7(3054) & \\
6=132(12378-4(3054))-7(3054) & \text { (from equation equation }(25)) \\
6=12378(132)+3054(-535) &
\end{array}
$$

And we have $\operatorname{gcd}(12378,3054)=6$

$$
\operatorname{gcd}(12378,3054)=12378(132)+3054(-535)
$$

So, $x=132$ and $y=-535$
Example 6 Find $\operatorname{gcd}(1106,497)$ and obtain integers x and y satisfy following:

$$
\operatorname{gcd}(1106,497)=1106 x+497 y
$$

Solution:- Here we use Euclidean Algorithm

$$
\begin{align*}
1106 & =2(497)+112 \tag{28}\\
497 & =4(112)+49 \tag{29}\\
112 & =2(49)+14 \tag{30}\\
49 & =3(14)+7 \tag{31}\\
14 & =2(7)+0 \tag{32}
\end{align*}
$$

So, $\operatorname{gcd}(1106,497)=7$
To represent 7 as a linear combination of the integers 1106 and 497 we start with the next to last of the displayed and successively eliminate the remainders 14,49 and 112

$$
\begin{array}{lrl}
7 & =49-3(14) & \\
7 & =49-3(112-2(49)) & \\
7 & =7(49)-3(112) & \\
7 & =7(497-4(112))-3(112) & \\
7 & =7(497)-31(112) & \\
7 & =7(497)-31(1106-2(197)) & \\
7 & =497(69)+1106(-31) & \\
\text { from equation equation }(31)) \\
\hline
\end{array}
$$

And we have $\operatorname{gcd}(1106,497)=7$

$$
\operatorname{gcd}(1106,497)=1106(69)+497(-31)
$$

So, $x=69$ and $y=-31$
Definition 3.3 The least common multiple of two nonzero integers a and b denoted by $\operatorname{lcm}(a, b)$ is the positive integer m satisfying the following:
(i) $a \mid m$ and $b \mid m$
(ii) If $a \mid c$ and $b \mid c$ with $c>0$, then $m \leqslant c$.

Theorem 11 For positive integers a and b then prove that

$$
\operatorname{gcd}(a, b) \cdot l c m(a, b)=a b
$$

Proof:- We know that for any positive integer a and $b, \operatorname{gcd}(a, b)=d$
This implies that $d \mid a$ and $d \mid b$
If $d \mid a \Rightarrow a=d r ;$ where r is an integer
If $d \mid b \Rightarrow b=d s$; where s is an integer
If $m=\frac{a b}{d}$
Then,

$$
\begin{array}{cccc}
m=\frac{(d r) b}{d} & \& & m=\frac{(d s) a}{d} \\
=b r & \& & =a s \\
\Rightarrow b \mid m & \& & a \mid m
\end{array}
$$

Which shows that m is a positive common multiple of a and b.
Now, let c be any positive integer that is common multiple of a and b
$\Rightarrow a \mid c$ and $b \mid c$
$\Rightarrow c=a u$ and $c=b v$ (where u and v are integers)
Also, we know that there exist integer x and y satisfying $d=a x+b y$
Now,

$$
\begin{aligned}
\frac{c}{m} & =\frac{c d}{a b} \\
& =\frac{c(a x+b y)}{a b} \\
& =\frac{c a x}{a b}+\frac{c b y}{a b} \\
& =\frac{c x}{b}+\frac{c y}{a} \\
& =\left(\frac{c}{b}\right) x+\left(\frac{c}{a}\right) y
\end{aligned}
$$

$$
\begin{aligned}
& \frac{c}{m}=v x+u y \\
& c=m(v x+u y) \\
& \Rightarrow m \mid c
\end{aligned}
$$

It conclude that $m \leqslant c$
Thus by definition (3.3),

$$
\begin{aligned}
& m=\operatorname{lcm}(a, b) \\
& \Rightarrow \frac{a b}{d}=\operatorname{lcm}(a, b) \\
& \Rightarrow \frac{a b}{\operatorname{gcd}(a, b)}=\operatorname{lcm}(a, b) \\
& \Rightarrow \operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b)=a b
\end{aligned}
$$

4 Linear Diophantine Equation

Definition 4.1 The general form of a linear Diophantine equation in two unknown x and y is

$$
a x+b y=c
$$

where a, b and c are integers and a, b are not both zero.
Theorem 12 Prove that the linear Diophantine equation $a x+b y=c$ has a solution if and only if $d \mid c$, where $d=\operatorname{gcd}(a, b)$
Further, if x_{0}, y_{0} is any particular solution of this equation then all other solutions are given by

$$
x=x_{0}+\left(\frac{b}{d}\right) t \quad \text { and } \quad y=y_{0}+\left(\frac{a}{d}\right) t
$$

Where, t is an arbitrary integer
Proof:- (\Rightarrow) Suppose that the equation $a x+b y=c$ has a solution say x_{0}, y_{0}.

$$
\therefore a x_{0}+b y_{0}=c
$$

Now, $d=\operatorname{gcd}(a, b)$

$$
\begin{gathered}
\therefore d \mid a \text { and } d \mid b \\
\therefore a=d r \quad \text { and } \quad b=d s, \quad \text { where } r, s \in \mathbb{Z}
\end{gathered}
$$

Now,

$$
\begin{aligned}
& c=a x_{0}+b y_{0} \\
& c=(d r) x_{0}+(d s) y_{0} \\
& c=d\left(r x_{0}+s y_{0}\right) \\
& \Rightarrow d \mid c
\end{aligned}
$$

(\Leftarrow) conversely suppose $d \mid c$

$$
\therefore c=d t \quad \text { where } t \in \mathbb{Z}
$$

Now, $d=\operatorname{gcd}(a, b)$

$$
\begin{aligned}
& \therefore d=a u+b v, \quad \text { where } u, v \in \mathbb{Z} \\
& \therefore d t=t a u+t b v \\
& \therefore d t=a(u t)+b(v t) \\
& \therefore d t=a x_{0}+b y_{0}
\end{aligned}
$$

where $x_{0}=u t$ and $y_{0}=v t$ is a particular solution of $a x+b y=c$
\therefore the equation $a x+b y=c$ has a solution.
Further Proof:- Suppose x_{0}, y_{0} is any particular solution of the equation $a x+b y=c$ and x^{\prime}, y^{\prime} any other solution of $a x+b y=c$.
Hence

$$
\begin{gather*}
a x_{0}+b y_{0}=c \quad \text { and } \quad a x^{\prime}+b y^{\prime}=c \\
\Rightarrow a x^{\prime}+b y^{\prime}=a x_{0}+b y_{0} \\
\Rightarrow a x^{\prime}-a x_{0}=b y_{0}-b y^{\prime} \\
\Rightarrow a\left(x^{\prime}-x_{0}\right)=b\left(y_{0}-y^{\prime}\right) \tag{33}
\end{gather*}
$$

Now,

$$
\begin{aligned}
& \operatorname{gcd}(a, b)=d \\
& \therefore \operatorname{gcd}\left(\frac{a}{d}, \frac{b}{d}\right)=1 \\
& \therefore \operatorname{gcd}(r, s)=1 \\
& \text { where } r=\frac{a}{d} \quad \text { and } \quad s=\frac{b}{d} \\
& \therefore a=d r \quad \text { and } \quad b=d s
\end{aligned}
$$

Putting these values of a and b in equation (33) we get

$$
\begin{align*}
d r\left(x^{\prime}-x_{0}\right) & =d s\left(y_{0}-y^{\prime}\right) \\
\therefore r\left(x^{\prime}-x_{0}\right) & =s\left(y_{0}-y^{\prime}\right) \tag{34}\\
\Rightarrow r & \mid s\left(y_{0}-y^{\prime}\right)
\end{align*}
$$

But, $\operatorname{gcd}(r, s)=1$

$$
\begin{array}{ll}
\therefore r \mid y_{0}-y^{\prime} & (\text { By Euclid's Lemma }) \\
\therefore y_{0}-y^{\prime}=r t & \text { For some integer } t \tag{35}
\end{array}
$$

From equation (34) we get

$$
\begin{align*}
r\left(x^{\prime}-x_{0}\right) & =s(r t) \\
\therefore x^{\prime}-x_{0} & =s t \\
\therefore x^{\prime} & =x_{0}+s t \\
\therefore x^{\prime} & =x_{0}+\left(\frac{b}{d}\right) t \tag{36}
\end{align*}
$$

From equation (35) we get

$$
\begin{align*}
& \therefore y^{\prime}=y_{0}-r t \\
& \therefore y^{\prime}=y_{0}-\left(\frac{a}{d}\right) t \tag{37}
\end{align*}
$$

Hence for any integer t

$$
\begin{aligned}
a x^{\prime}+b y^{\prime} & =a\left[x_{0}+\left(\frac{b}{d}\right) t\right]+b\left[y_{0}-\left(\frac{a}{d}\right) t\right] \quad(\text { from equation }(36) \text { and }(37)) \\
& =a x_{0}+a\left(\frac{b}{d}\right) t+b y_{0}-b\left(\frac{a}{d}\right) t \\
& =a x_{0}+b y_{0} \\
& =c \quad\left(\because x_{0}, y_{0} \text { is a solution of the equation } a x+b y=c\right)
\end{aligned}
$$

Hence all other solution are given by

$$
\begin{aligned}
& x=x_{0}+\left(\frac{b}{d}\right) t \\
& y=y_{0}-\left(\frac{a}{d}\right) t \quad \text { where } t \text { is an integer }
\end{aligned}
$$

Example 7 Find the General Solution of the linear Diophantine equation

$$
172 x+20 y=1000
$$

Solution:- First we find $\operatorname{gcd}(172,20)$

$$
\begin{align*}
172 & =8(20)+12 \tag{38}\\
20 & =1(12)+8 \tag{39}\\
12 & =1(8)+4 \tag{40}\\
8 & =2(4)+0
\end{align*}
$$

Hence $\operatorname{gcd}(172,20)=4$ and $4 \mid 1000$
\therefore The Solution of the given equation exists.
Now,

$$
\begin{array}{ll}
4=12-1(8) & \\
4=12-1(20-1(12) & \\
4=2(\text { fron equation }(40))-1(20) & \\
4=2(172-8(20))-1(20) & \\
4=2(\text { fron equation }(39)) \tag{41}\\
4 & =2(172)-17(20)
\end{array}
$$

Multiplying equation (41) by 250 we get

$$
1000=172(500)+20(-4250)
$$

Thus one solution of the given Diophantine equation is given by

$$
x_{0}=500 \quad \& \quad y_{0}=-4250
$$

Now, general solution of given Diophantine equation is given by

$$
\begin{align*}
x & =x_{0}+\left(\frac{b}{d} t\right) \\
& =500+\left(\frac{20}{4}\right) t \\
x & =500+5 t \tag{42}\\
y & =y_{0}-\left(\frac{a}{d} t\right) \\
& =(-4250)-\left(\frac{172}{4}\right) t \\
y & =-4250-43 t \tag{43}
\end{align*}
$$

Now from equation (42) we get

$$
\begin{align*}
5 t+500 & >0 \\
t & >-100 \tag{44}
\end{align*}
$$

And from equation (43) we get

$$
\begin{gather*}
-4250-43 t>0 \\
\frac{-4250}{43}>t \\
-98.83>t \tag{45}
\end{gather*}
$$

From equation (44) and (45) we get

$$
-100<t<-98.83
$$

Thus we get $t=-99$
Put $t=-99$ in equation (42) and (43) we get unique positive solution of Diophantine equation is $x=5$ and $y=7$

Example 8 A customer bought a dozen pieces of fruit, apples and oranges,for $\$ 1.32=[132$ cents $]$. If an apple 3 cents more than an orange and more apples then oranges were purchased, how many pieces of each kind were bought?

Solution:- Suppose x is the number of apples purchased.
And y is the number of oranges purchased

$$
\begin{equation*}
\therefore x+y=12 \tag{46}
\end{equation*}
$$

Suppose z is the cost of an orange in cent.
And $z+3$ is the cost of an apple in cent.
\therefore we get

$$
\begin{align*}
(z+3) x+z y & =132 \\
\therefore z x+3 x+z y & =132 \\
\therefore z(x+y)+3 x & =132 \\
\therefore 3 x+z(x+y) & =132 \\
\therefore 3 x+12 z & =132 \quad \text { (from equation (46)) } \\
\therefore x+4 z & =44 \tag{47}
\end{align*}
$$

Now, $\operatorname{gcd}(1,4)=1$ and $1 \mid 44$ therefore the solution of this equation exists.

$$
1=1(-3)+4(1)
$$

Multiply above equation by (44) we get

$$
\begin{gathered}
44=1(-132)+4(44) \\
\therefore x_{0}=-132 \quad \& \quad z_{0}=44
\end{gathered}
$$

This is one solution of the equation.
All the solution are of the form

$$
\begin{align*}
& x=-132+4 t \tag{48}\\
& z=44+(-1) t \quad \text { where } t \in \mathbb{Z} \tag{49}
\end{align*}
$$

Now, apples are more than oranges

Therefore we get

$$
\begin{align*}
& x>y \quad \text { and } \\
& x+y=12 \\
& \therefore x \geqslant 12 \quad(\because y \geqslant 0) \tag{50}
\end{align*}
$$

Now,

$$
\begin{align*}
x & >12-x \\
\therefore 2 x & >12 \\
\therefore x & >6 \tag{51}
\end{align*}
$$

Now, from equation (50) and (51) we get,

$$
\begin{aligned}
6 & <x \leqslant 12 \\
\therefore 6 & <-132+4 t \leqslant 12 \quad \text { (from equation (48)) } \\
\therefore 138 & <4 t \leqslant 144 \\
\therefore 34.5 & <t \leqslant 36
\end{aligned}
$$

$\therefore t=35$ and $t=36$
Now, $t=35$ and from equation (48) we get $x=8, y=4$ and $z=9$
Now, $t=36$ and from equation (48) we get $x=12, y=0$ and $z=8$
So, there are two possible purchase:
(i) 8 apples at 12 cents each and 4 apples at 9 cents each.
(ii) 12 apples at 11 cents each.

5 Exercises

1. By Principle of Mathematical induction Show that

$$
1+2+2^{2}+2^{3}+\ldots+2^{n-1}=2^{n}-1
$$

2. By Principle of Mathematical induction Show that

$$
1.2+2.3+3.4+\ldots+n .(n+1)=\frac{n(n+1)(n+2)}{3}
$$

3. Find $\operatorname{gcd}(726,275)$ and obtain integers x and y satisfy following:

$$
\operatorname{gcd}(726,275)=726 x+275 y
$$

4. Find $\operatorname{gcd}(1769,2378)$ and obtain integers x and y satisfy following:

$$
\operatorname{gcd}(1769,2378)=1769 x+2378 y
$$

5. Find (i) $l c m(306,257)$ and (ii) $l c m(272,1479)$
6. Find General solution of the linear Diophantine equation

$$
54 x+21 y=906
$$

7. If a cook is worth 5 coins, a hen 3 coins and three chicks together 1 coin, how many cocks,hens and chicks totaling 100, can be bought for 100 coins?
